A Numerical Scheme for Computing Stable and Unstable Manifolds in Nonautonomous Flows

2016 ◽  
Vol 26 (14) ◽  
pp. 1630041 ◽  
Author(s):  
Sanjeeva Balasuriya

There are many methods for computing stable and unstable manifolds in autonomous flows. When the flow is nonautonomous, however, difficulties arise since the hyperbolic trajectory to which these manifolds are anchored, and the local manifold emanation directions, are changing with time. This article utilizes recent results which approximate the time-variation of both these quantities to design a numerical algorithm which can obtain high resolution in global nonautonomous stable and unstable manifolds. In particular, good numerical approximation is possible locally near the anchor trajectory. Nonautonomous manifolds are computed for two examples: a Rossby wave situation which is highly chaotic, and a nonautonomus (time-aperiodic) Duffing oscillator model in which the manifold emanation directions are rapidly changing. The numerical method is validated and analyzed in these cases using finite-time Lyapunov exponent fields and exactly known nonautonomous manifolds.

Author(s):  
Alexander F. Vakakis

Abstract The splitting of the stable and unstable manifolds of the rapidly forced Duffing oscillator with negative stiffness is investigated. The method used relies on the computation of analytic approximations for the orbits on the perturbed manifolds, and the asymptotic approximation of these orbits by successive integrations by parts. It is shown, that the splitting of the manifolds becomes exponentially small as the perturbation parameter tends to zero, and that the estimate for the splitting distance given by the Melnikov Integral dominates over high order corrections.


1994 ◽  
Vol 04 (04) ◽  
pp. 933-941 ◽  
Author(s):  
ANDREW L. KATZ ◽  
EARL H. DOWELL

The study of stable and unstable manifolds, and their intersections with each other, is a powerful technique for interpreting complex bifurcations of nonlinear systems. The escape phenomenon in the twin-well Duffing oscillator is one such bifurcation that is elucidated through the analysis of manifold intersections. In this paper, two escape scenarios in the twin-well Duffing oscillator are presented. In each scenario, the relevant manifold structures are examined for parameter values on either side of the escape bifurcation. Included is a description of the role of the hilltop saddle stable manifolds, which are known to separate the single well basins (should single well attractors exist). In each of the two bifurcation scenarios, it is shown through a detailed analysis of Poincaré maps that a homoclinic intersection of the manifolds of a specific period-3 saddle implies the destruction of the single well chaotic attractor. Although the Duffing oscillator is used to illustrate the ideas advanced here, it is thought that the approach will be useful for a variety of dynamical systems.


Author(s):  
Sanjeeva Balasuriya

Eddy-driven jets are of importance in the ocean and atmosphere, and to a first approximation are governed by Rossby wave dynamics. This study addresses the time-dependent flux of fluid and potential vorticity between such a jet and an adjacent eddy, with specific regard to determining zonal and meridional wavenumber dependence. The flux amplitude in wavenumber space is obtained, which is easily computable for a given jet geometry, speed and latitude, and which provides instant information on the wavenumbers of the Rossby waves which maximize the flux. This new tool enables the quick determination of which modes are most influential in imparting fluid exchange, which in the long term will homogenize the potential vorticity between the eddy and the jet. The results are validated by computing backward- and forward-time finite-time Lyapunov exponent fields, and also stable and unstable manifolds; the intermingling of these entities defines the region of chaotic transport between the eddy and the jet. The relationship of all of these to the time-varying transport flux between the eddy and the jet is carefully elucidated. The flux quantification presented here works for general time-dependence, whether or not lobes (intersection regions between stable and unstable manifolds) are present in the mixing region, and is therefore also easily computable for wave packets consisting of infinitely many wavenumbers.


2016 ◽  
Vol 807 ◽  
pp. 509-545 ◽  
Author(s):  
Sanjeeva Balasuriya ◽  
Rahul Kalampattel ◽  
Nicholas T. Ouellette

Hyperbolic points and their unsteady generalization – hyperbolic trajectories – drive the exponential stretching that is the hallmark of nonlinear and chaotic flow. In infinite-time steady or periodic flows, the stable and unstable manifolds attached to each hyperbolic trajectory mark fluid elements that asymptote either towards or away from the hyperbolic trajectory, and which will therefore eventually experience exponential stretching. But typical experimental and observational velocity data are unsteady and available only over a finite time interval, and in such situations hyperbolic trajectories will move around in the flow, and may lose their hyperbolicity at times. Here we introduce a way to determine their region of influence, which we term a hyperbolic neighbourhood, that marks the portion of the domain that is instantaneously dominated by the hyperbolic trajectory. We establish, using both theoretical arguments and empirical verification from model and experimental data, that the hyperbolic neighbourhoods profoundly impact the Lagrangian stretching experienced by fluid elements. In particular, we show that fluid elements traversing a flow experience exponential boosts in stretching while within these time-varying regions, that greater residence time within hyperbolic neighbourhoods is directly correlated to larger finite-time Lyapunov exponent (FTLE) values, and that FTLE diagnostics are reliable only when the hyperbolic neighbourhoods have a geometrical structure that is ‘regular’ in a specific sense.


2017 ◽  
Vol 27 (03) ◽  
pp. 1730012
Author(s):  
Kyohei Kamiyama ◽  
Motomasa Komuro ◽  
Kazuyuki Aihara

In this study, bifurcations of an invariant closed curve (ICC) generated from a homoclinic connection of a saddle fixed point are analyzed in a planar map. Such bifurcations are called homoclinic cycle (HCC) bifurcations of the saddle fixed point. We examine the HCC bifurcation structure and the properties of the generated ICC. A planar map that can accurately control the stable and unstable manifolds of the saddle fixed point is designed for this analysis and the results indicate that the HCC bifurcation depends upon a product of two eigenvalues of the saddle fixed point, and the generated ICC is a chaotic attractor with a positive Lyapunov exponent.


2018 ◽  
Vol 28 (14) ◽  
pp. 1850169
Author(s):  
Lingli Xie

According to the theory of stable and unstable manifolds of an equilibrium point, we firstly find out some geometrical properties of orbits on the stable and unstable manifolds of a saddle point under some brief conditions of nonlinear terms composed of polynomials for [Formula: see text]-dimensional time continuous system. These properties show that the orbits on stable and unstable manifolds of the saddle point will stay on the corresponding stable and unstable subspaces in the [Formula: see text]-neighborhood of the saddle point. Furthermore, the necessary conditions of existence for orbit homoclinic to a saddle point are exposed. Some examples including homoclinic bifurcation are given to indicate the application of the results. Finally, the conclusions are presented.


2014 ◽  
Vol 36 (1) ◽  
pp. 23-63 ◽  
Author(s):  
VAUGHN CLIMENHAGA ◽  
YAKOV PESIN

We prove several new versions of the Hadamard–Perron theorem, which relates infinitesimal dynamics to local dynamics for a sequence of local diffeomorphisms, and in particular establishes the existence of local stable and unstable manifolds. Our results imply the classical Hadamard–Perron theorem in both its uniform and non-uniform versions, but also apply much more generally. We introduce a notion of ‘effective hyperbolicity’ and show that if the rate of effective hyperbolicity is asymptotically positive, then the local manifolds are well behaved with positive asymptotic frequency. By applying effective hyperbolicity to finite-orbit segments, we prove a closing lemma whose conditions can be verified with a finite amount of information.


Author(s):  
Louay S. Yousuf ◽  
Dan B. Marghitu

In this study a cam and follower mechanism is analyzed. There is a clearance between the follower and the guide. The mechanism is analyzed using SolidWorks simulations taking into account the impact and the friction between the roller follower and the guide. Four different follower guide’s clearances have been used in the simulations like 0.5, 1, 1.5, and 2 mm. An experimental set up is developed to capture the general planar motion of the cam and follower. The measures of the cam and the follower positions are obtained through high-resolution optical encoders (markers). The effect of follower guide’s clearance is investigated for different cam rotational speeds such as 100, 200, 300, 400, 500, 600, 700 and 800 R.P.M. Impact with friction is considered in our study to calculate the Lyapunov exponent. The largest Lyapunov exponents for the simulated and experimental data are analyzed and selected.


Sign in / Sign up

Export Citation Format

Share Document