A Class of Integer Order and Fractional Order Hyperchaotic Systems via the Chen System

2016 ◽  
Vol 26 (06) ◽  
pp. 1650109 ◽  
Author(s):  
Fei Xu

In this article, we investigate the generation of a class of hyperchaotic systems via the Chen chaotic system using both integer order and fractional order differential equation systems. Based on the Chen chaotic system, we designed a system with four nonlinear ordinary differential equations. For different parameter sets, the trajectory of the system may diverge or display a hyperchaotic attractor with double wings. By linearizing the ordinary differential equation system with divergent trajectory and designing proper switching controls, we obtain a chaotic attractor. Similar phenomenon has also been observed in linearizing the hyperchaotic system. The corresponding fractional order systems are also considered. Our investigation indicates that, switching control can be applied to either linearized chaotic or nonchaotic differential equation systems to create chaotic attractor.

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Yan-Ping Wu ◽  
Guo-Dong Wang

The synchronization between fractional-order hyperchaotic systems and integer-order hyperchaotic systems via sliding mode controller is investigated. By designing an active sliding mode controller and choosing proper control parameters, the drive and response systems are synchronized. Synchronization between the fractional-order Chen chaotic system and the integer-order Chen chaotic system and between integer-order hyperchaotic Chen system and fractional-order hyperchaotic Rössler system is used to illustrate the effectiveness of the proposed synchronization approach. Numerical simulations coincide with the theoretical analysis.


2014 ◽  
Vol 24 (10) ◽  
pp. 1450130
Author(s):  
Fei Xu

In this article, we present a systematic approach to design chaos generators using integer order and fractional order differential equation systems. A series of multiwing chaotic attractors and grid multiwing chaotic attractors are obtained using linear integer order differential equation systems with switching controls. The existence of chaotic attractors in the corresponding fractional order differential equation systems is also investigated. We show that, using the nonlinear fractional order differential equation system, or linear fractional order differential equation systems with switching controls, a series of multiwing chaotic attractors can be obtained.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 306
Author(s):  
Tamás S. Biró ◽  
Lehel Csillag ◽  
Zoltán Néda

A mean-field type model with random growth and reset terms is considered. The stationary distributions resulting from the corresponding master equation are relatively easy to obtain; however, for practical applications one also needs to know the convergence to stationarity. The present work contributes to this direction, studying the transient dynamics in the discrete version of the model by two different approaches. The first method is based on mathematical induction by the recursive integration of the coupled differential equations for the discrete states. The second method transforms the coupled ordinary differential equation system into a partial differential equation for the generating function. We derive analytical results for some important, practically interesting cases and discuss the obtained results for the transient dynamics.


2015 ◽  
Vol 10 (2) ◽  
pp. 74
Author(s):  
Roni Tri Putra ◽  
Sukatik - ◽  
Sri Nita

In this paper, it will be studied stability for a SEIR epidemic model with infectious force in latent, infected and immune period with incidence rate. From the model it will be found investigated the existence and uniqueness solution  of points its equilibrium. Existence solution of points equilibrium proved by show its differential equations system of equilibrium continue, and uniqueness solution of points equilibrium proved by show its differential equation system of equilibrium differentiable continue. 


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Qiyuan Wei ◽  
Liwei Zhang

<p style='text-indent:20px;'>An accelerated differential equation system with Yosida regularization and its numerical discretized scheme, for solving solutions to a generalized equation, are investigated. Given a maximal monotone operator <inline-formula><tex-math id="M1">\begin{document}$ T $\end{document}</tex-math></inline-formula> on a Hilbert space, this paper will study the asymptotic behavior of the solution trajectories of the differential equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation} \dot{x}(t)+T_{\lambda(t)}(x(t)-\alpha(t)T_{\lambda(t)}(x(t))) = 0,\quad t\geq t_0\geq 0, \end{equation} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>to the solution set <inline-formula><tex-math id="M2">\begin{document}$ T^{-1}(0) $\end{document}</tex-math></inline-formula> of a generalized equation <inline-formula><tex-math id="M3">\begin{document}$ 0 \in T(x) $\end{document}</tex-math></inline-formula>. With smart choices of parameters <inline-formula><tex-math id="M4">\begin{document}$ \lambda(t) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ \alpha(t) $\end{document}</tex-math></inline-formula>, we prove the weak convergence of the trajectory to some point of <inline-formula><tex-math id="M6">\begin{document}$ T^{-1}(0) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M7">\begin{document}$ \|\dot{x}(t)\|\leq {\rm O}(1/t) $\end{document}</tex-math></inline-formula> as <inline-formula><tex-math id="M8">\begin{document}$ t\rightarrow +\infty $\end{document}</tex-math></inline-formula>. Interestingly, under the upper Lipshitzian condition, strong convergence and faster convergence can be obtained. For numerical discretization of the system, the uniform convergence of the Euler approximate trajectory <inline-formula><tex-math id="M9">\begin{document}$ x^{h}(t) \rightarrow x(t) $\end{document}</tex-math></inline-formula> on interval <inline-formula><tex-math id="M10">\begin{document}$ [0,+\infty) $\end{document}</tex-math></inline-formula> is demonstrated when the step size <inline-formula><tex-math id="M11">\begin{document}$ h \rightarrow 0 $\end{document}</tex-math></inline-formula>.</p>


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Ulrich Werner

This paper shows a theoretical vibration analysis regarding excitation due to elliptical shaft journals in sleeve bearings of electrical motors, based on a simplified rotordynamic model. It is shown that elliptical shaft journals lead to kinematic constraints regarding the movement of the shaft journals on the oil film of the sleeve bearings and therefore to an excitation of the rotordynamic system. The solution of the linear differential equation system leads to the mathematical description of the movement of the rotor mass, the shaft journals, and the sleeve bearing housings. Additionally the relative movements between the shaft journals and the bearing housings are deduced, as well as the bearing housing vibration velocities. The presented simplified rotordynamic model can also be applied to rotating machines, other than electrical machines. In this case, only the electromagnetic spring valuecmhas to be put to zero.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Abir Lassoued ◽  
Olfa Boubaker

A novel hyperchaotic system with fractional-order (FO) terms is designed. Its highly complex dynamics are investigated in terms of equilibrium points, Lyapunov spectrum, and attractor forms. It will be shown that the proposed system exhibits larger Lyapunov exponents than related hyperchaotic systems. Finally, to enhance its potential application, a related circuit is designed by using the MultiSIM Software. Simulation results verify the effectiveness of the suggested circuit.


Sign in / Sign up

Export Citation Format

Share Document