Realization of a Novel Logarithmic Chaotic System and Its Characteristic Analysis

2019 ◽  
Vol 29 (02) ◽  
pp. 1930004 ◽  
Author(s):  
Xiaoyuan Wang ◽  
Xiaotao Min ◽  
Jun Yu ◽  
Yiran Shen ◽  
Guangyi Wang ◽  
...  

To further improve the complexity of the chaotic system and broaden the chaotic parameter range, a novel logarithmic chaotic system was constructed by adding a nonlinear term of logarithm. The dynamic characteristics of the chaotic system were analyzed by chaotic phase diagram, bifurcation diagram, Lyapunov exponent spectrum, Poincaré mapping and dynamical map, etc. The system was digitized by DSP simulation, and the corresponding experimental results are completely consistent with the theoretical analysis. Furthermore, the equivalent hardware circuit was designed and theoretical analysis was verified by its experimental results.

2010 ◽  
Vol 24 (24) ◽  
pp. 4771-4778 ◽  
Author(s):  
XING-YUAN WANG ◽  
YONG-FENG GAO ◽  
YAO-XIAN ZHANG

This paper presents a four-dimensional hyperchaos Qi system, obtained by adding linear term and nonlinear term of nonlinear controller to Qi chaos system. The hyperchaos Qi system is studied by bifurcation diagram, Lyapunov exponent spectrum and phase diagram. Numerical simulations show that the new system's behavior can be periodic, chaotic and hyperchaotic as the parameter varies.


2011 ◽  
Vol 130-134 ◽  
pp. 3924-3927
Author(s):  
Wei Deng ◽  
Yan Feng Wang ◽  
Jie Fang

A new three-dimensional cubic chaotic system is reported. This new system contains five system parameters and each equation contains nonlinear term. Moreover, two equations of nonlinear term is cubic. The basic properties of the new system are investigated via theoretical analysis, numerical simulation, Lyapunov exponent spectrum, bifurcation diagram, Lyapunov dimension and Poincare diagram. The different dynamic behaviors of the new system are analyzed when each system parameter is changed .An electronic circuit was designed to realize the new chaotic system. Experimental chaotic behaviors of the system were found to be identical to the dynamic properties predicted by theoretical analysis and numerical simulations.


2012 ◽  
Vol 468-471 ◽  
pp. 727-732 ◽  
Author(s):  
Zhang Gang ◽  
Li Fang He ◽  
Tian Qi Zhang

A method for chaotic synchronization system based on nonlinear control was studied. The general approach to chaotic system is following Logistic map. First, the parameter which meets chaotic status was analyzed and found via bifurcation diagram and Lyapunov exponent spectrum. The system can be synchronized quickly after just only a single iteration. Then, the method of implementing the synchronization system within a chaotic parameter modulation based communication system was researched. The deduction and simulation results also showed the probability for implementation the system in fast secure chaotic communications that require instant synchronization schemes. Finally, the chaotic system was applied in image transmission and the simulation results were also given.


2021 ◽  
Vol 31 (10) ◽  
pp. 2150146
Author(s):  
Yuanyuan Si ◽  
Hongjun Liu ◽  
Yuehui Chen

As the only nonlinear component for symmetric cryptography, S-Box plays an important role. An S-Box may be vulnerable because of the existence of fixed point, reverse fixed point or short iteration cycles. To construct a keyed strong S-Box, first, a 2D enhanced quadratic map (EQM) was constructed, and its dynamic behaviors were analyzed through phase diagram, Lyapunov exponent, Kolmogorov entropy, bifurcation diagram and randomness testing. The results demonstrated that the state points of EQM have uniform distribution, ergodicity and better randomness. Then a keyed strong S-Box construction algorithm was designed based on EQM, and the fixed point, reverse fixed point, and short cycles were eliminated. Experimental results verified the algorithm’s feasibility and effectiveness.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1341
Author(s):  
Xiefu Zhang ◽  
Zean Tian ◽  
Jian Li ◽  
Xianming Wu ◽  
Zhongwei Cui

This paper reports a hidden chaotic system without equilibrium point. The proposed system is studied by the software of MATLAB R2018 through several numerical methods, including Largest Lyapunov exponent, bifurcation diagram, phase diagram, Poincaré map, time-domain waveform, attractive basin and Spectral Entropy. Seven types of attractors are found through altering the system parameters and some interesting characteristics such as coexistence attractors, controllability of chaotic attractor, hyperchaotic behavior and transition behavior are observed. Particularly, the Spectral Entropy algorithm is used to analyze the system and based on the normalized values of Spectral Entropy, the state of the studied system can be identified. Furthermore, the system has been implemented physically to verify the realizability.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoyuan Wang ◽  
Xiaotao Min ◽  
Pengfei Zhou ◽  
Dongsheng Yu

A novel hyperchaotic circuit is proposed by introducing a memristor feedback in a simple Lorenz-like chaotic system. Dynamic analysis shows that it has infinite equilibrium points and multistability. Additionally, the symmetrical coexistent attractors are investigated. Further, the hyperchaotic system is implemented by analogue circuits. Corresponding experimental results are completely consistent with the theoretical analysis.


2015 ◽  
Vol 25 (11) ◽  
pp. 1550151 ◽  
Author(s):  
Yuxia Li ◽  
Xia Huang ◽  
Yiwen Song ◽  
Jinuan Lin

In this paper, a new fourth-order memristive chaotic system is constructed on the basis of Chua's circuit. Chaotic behaviors are verified through a series of dynamical analyses, including Lyapunov exponent analysis, bifurcation analysis, and phase diagram analysis. In addition, chaos attractors in the newly-proposed system are implemented by hardware circuits.


2015 ◽  
Vol 25 (10) ◽  
pp. 1530027 ◽  
Author(s):  
Xingxing Ai ◽  
Kehui Sun ◽  
Shaobo He ◽  
Huihai Wang

Three transformation approaches for generating grid multiscroll chaotic attractors are presented through theoretical analysis and numerical simulation. Three kinds of grid multiscroll chaotic attractors are generated based on one-dimensional multiscroll Chua system. The dynamics of the multiscroll chaotic attractors are analyzed by means of equilibrium points, eigenvalues, the largest Lyapunov exponent and complexity. As the experimental verification, we implemented the circular grid multiscroll attractor on DSP platform. The simulation and experimental results are consistent well with that of theoretical analysis, and it shows that the design approaches are effective.


2016 ◽  
Vol 26 (08) ◽  
pp. 1650130 ◽  
Author(s):  
Fang Yuan ◽  
Guangyi Wang ◽  
Peipei Jin ◽  
Xiaoyuan Wang ◽  
Guojin Ma

A smooth curve model of meminductor and its equivalent circuit have been designed, on the condition that the meminductor is commonly unavailable. The equivalent circuit can be used for breadboard experiments for various application circuit designs of meminductor. Based on the meminductor, a new chaotic oscillator is proposed. The dynamical behaviors of the oscillator are investigated, including equilibrium set, Lyapunov exponent spectrum, bifurcations and dynamical map of the system. Particularly, the amplitude controlling is analyzed and coexisting attractors are found for conditions of different parameters. Furthermore, the experimental results are given to confirm the correction of the proposed meminductor model and the meminductor-based oscillator.


Sign in / Sign up

Export Citation Format

Share Document