nonlinear component
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 22)

H-INDEX

13
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7989
Author(s):  
Jan Dinkelbach ◽  
Lennart Schumacher ◽  
Lukas Razik ◽  
Andrea Benigni ◽  
Antonello Monti

The integration of renewable energy sources into modern power systems requires simulations with smaller step sizes, larger network models and the incorporation of complex nonlinear component models. These features make it more difficult to meet computation time requirements in real-time simulations and have motivated the development of high-performance LU decomposition methods. Since nonlinear component models cause numerical variations in the system matrix between simulation steps, this paper places a particular focus on the recomputation of LU decomposition, i.e., on the refactorisation step. The main contribution is the adoption of a factorisation path algorithm for partial refactorisation, which takes into account that only a subset of matrix entries change their values. The approach is integrated into the modern LU decomposition method NICSLU and benchmarked against the methods SuperLU and KLU. A performance analysis was carried out considering benchmark as well as real power systems. The results show the significant speedup of refactorisation computation times in use cases involving system matrices of different sizes, a variety of sparsity patterns and different ratios of numerically varying matrix entries. Consequently, the presented high-performance LU decomposition method can assist in meeting computation time requirements in real-time simulations of modern power systems.


2021 ◽  
Vol 31 (10) ◽  
pp. 2150146
Author(s):  
Yuanyuan Si ◽  
Hongjun Liu ◽  
Yuehui Chen

As the only nonlinear component for symmetric cryptography, S-Box plays an important role. An S-Box may be vulnerable because of the existence of fixed point, reverse fixed point or short iteration cycles. To construct a keyed strong S-Box, first, a 2D enhanced quadratic map (EQM) was constructed, and its dynamic behaviors were analyzed through phase diagram, Lyapunov exponent, Kolmogorov entropy, bifurcation diagram and randomness testing. The results demonstrated that the state points of EQM have uniform distribution, ergodicity and better randomness. Then a keyed strong S-Box construction algorithm was designed based on EQM, and the fixed point, reverse fixed point, and short cycles were eliminated. Experimental results verified the algorithm’s feasibility and effectiveness.


Author(s):  
Nira Mawangi Sarif ◽  
Rafidah Ngadengon ◽  
Herdawatie Abdul Kadir ◽  
Mohd Hafiz A. Jalil ◽  
Khalid Abidi

Autonomous underwater vehicle (AUV) are underwater robotic devices intended to explore hostiles territories in underwater domain. AUVs research gaining popularity among underwater research community because of its extensive applications and challenges to overcome unpredictable ocean behavior. The aim of this paper is to design discrete time terminal sliding mode control (DTSMC) reaching law-based employed to NPS AUV II purposely to improve the dynamic response of the closed loop system. This is accomplished by introducing a nonlinear component to sliding surface design in which the system state accelerated, and chattering effect is suppressed. The nonlinear component consist of fractional power is to ensure steeper slope of the sliding surface in the vicinity of the equilibrium point which lead to quicker convergence speed. Thus, the chattering effect in the control action suppressed as the convergence of the system state accelerated. The stability of the control system is proven by using Sarpturk analysis and the performance of the DTSMC is demonstrated through simulation study. The performance of DTSMC is benchmarked with DSMC and PID controller


2021 ◽  
Vol 9 ◽  
pp. 8-12
Author(s):  
Zhengmao Ye ◽  
Hang Yin ◽  
Yongmao Ye

Complex real world problems are essentially nonlinear. Linear models are relatively simple but inaccurate to describe the nonlinear aspects of dynamic system behaviors. Denoising techniques have been broadly applied to numerous applications in the spatial domain, frequency domain, and time domain. To increase the adaptability of denoising techniques to signal processing of arbitrary nonlinear systems, kernel based nonlinear component analysis is proposed to enhance wavelet denoising. In the multilevel wavelet decomposition, the low frequency approximations and high frequency details are produced at each level. Discrete wavelet transform (DWT) will help to decompose low frequency approximations exclusively at all the succeeding levels, while wavelet packet transform decomposes both approximations and high frequency details at each level. DWT is selected for wavelet denoising in this study, where details at each level and the approximation at specified level are all subject to simplification using nonlinear component analysis. Case studies of typical nonlinear denoising problems in various domains are conducted. The results manifest strong feasibility and adaptability across diverse denoising problems of nonlinear systems.


2021 ◽  
pp. 875529302098198
Author(s):  
Muhammad Aaqib ◽  
Duhee Park ◽  
Muhammad Bilal Adeel ◽  
Youssef M A Hashash ◽  
Okan Ilhan

A new simulation-based site amplification model for shallow sites with thickness less than 30 m in Korea is developed. The site amplification model consists of linear and nonlinear components that are developed from one-dimensional linear and nonlinear site response analyses. A suite of measured shear wave velocity profiles is used to develop corresponding randomized profiles. A VS30 scaled linear amplification model and a model dependent on both VS30 and site period are developed. The proposed linear models compare well with the amplification equations developed for the western United States (WUS) at short periods but show a distinct curved bump between 0.1 and 0.5 s that corresponds to the range of site natural periods of shallow sites. The response at periods longer than 0.5 s is demonstrated to be lower than those of the WUS models. The functional form widely used in both WUS and central and eastern North America (CENA), for the nonlinear component of the site amplification model, is employed in this study. The slope of the proposed nonlinear component with respect to the input motion intensity is demonstrated to be higher than those of both the WUS and CENA models, particularly for soft sites with VS30 < 300 m/s and at periods shorter than 0.2 s. The nonlinear component deviates from the models for generic sites even at low ground motion intensities. The comparisons highlight the uniqueness of the amplification characteristics of shallow sites that a generic site amplification model is unable to capture.


Author(s):  
Léandre Kamdjeu Kengne ◽  
Jacques Kengne ◽  
Nicole Adelaïde Kengnou Telem ◽  
Justin Roger Mboupda Pone ◽  
Hervé Thierry Kamdem Tagne

We consider the modeling and asymmetry-induced dynamics for a class of chaotic circuits sharing the same feature of an antiparallel diodes pair as the nonlinear component. The simple autonomous jerk circuit of [J. Kengne, Z. T. Njitacke, A. N. Nguomkam, M. T. Fouodji and H. B. Fotsin, Coexistence of multiple attractors and crisis route to chaos in a novel chaotic jerk circuit, Int. J. Bifurcation Chaos Appl. Sci. Eng.26 (2016) 1650081] is used as the prototype. In contrast to current approaches where the diodes are assumed to be identical (and thus a perfect symmetric circuit), we examine the more realistic situation where the diodes have different electrical properties in spite of unavoidable scattering of parameters. In this case, the nonlinear component formed by the diodes pair displays an asymmetric current–voltage characteristic which induces asymmetry of the whole circuit. The model is described by a continuous-time 3D autonomous system (ODEs) with exponential nonlinearities. We examine the chaos mechanism with respect to system parameters both in the symmetric and asymmetric modes of operation by using bifurcation diagrams and phase space trajectory plots as the main indicators. Period doubling route to chaos, merging crisis, and multiple coexisting (i.e., two, four, or six) mutually symmetric attractors are reported in the symmetric mode of oscillation. In the asymmetric mode, several unusual nonlinear behaviors arise such as coexisting bifurcations, hysteresis, asymmetric double-band chaotic attractor, crisis, and coexisting multiple (i.e., two, three, four, or five) asymmetric attractors for some suitable ranges of parameters. Theoretical analyses and circuit experiments show a very good agreement. The results obtained in this work let us conjecture that chaotic circuits with antiparallel diodes pair are capable of much more complex dynamics than what is reported in the current literature and thus should be reconsidered accordingly in spite of the approach followed in this work.


Sign in / Sign up

Export Citation Format

Share Document