scholarly journals Hyperchaotic Circuit Based on Memristor Feedback with Multistability and Symmetries

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoyuan Wang ◽  
Xiaotao Min ◽  
Pengfei Zhou ◽  
Dongsheng Yu

A novel hyperchaotic circuit is proposed by introducing a memristor feedback in a simple Lorenz-like chaotic system. Dynamic analysis shows that it has infinite equilibrium points and multistability. Additionally, the symmetrical coexistent attractors are investigated. Further, the hyperchaotic system is implemented by analogue circuits. Corresponding experimental results are completely consistent with the theoretical analysis.

Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Abir Lassoued ◽  
Olfa Boubaker

A novel hyperchaotic system with fractional-order (FO) terms is designed. Its highly complex dynamics are investigated in terms of equilibrium points, Lyapunov spectrum, and attractor forms. It will be shown that the proposed system exhibits larger Lyapunov exponents than related hyperchaotic systems. Finally, to enhance its potential application, a related circuit is designed by using the MultiSIM Software. Simulation results verify the effectiveness of the suggested circuit.


2019 ◽  
Vol 29 (02) ◽  
pp. 1930004 ◽  
Author(s):  
Xiaoyuan Wang ◽  
Xiaotao Min ◽  
Jun Yu ◽  
Yiran Shen ◽  
Guangyi Wang ◽  
...  

To further improve the complexity of the chaotic system and broaden the chaotic parameter range, a novel logarithmic chaotic system was constructed by adding a nonlinear term of logarithm. The dynamic characteristics of the chaotic system were analyzed by chaotic phase diagram, bifurcation diagram, Lyapunov exponent spectrum, Poincaré mapping and dynamical map, etc. The system was digitized by DSP simulation, and the corresponding experimental results are completely consistent with the theoretical analysis. Furthermore, the equivalent hardware circuit was designed and theoretical analysis was verified by its experimental results.


2015 ◽  
Vol 25 (10) ◽  
pp. 1530027 ◽  
Author(s):  
Xingxing Ai ◽  
Kehui Sun ◽  
Shaobo He ◽  
Huihai Wang

Three transformation approaches for generating grid multiscroll chaotic attractors are presented through theoretical analysis and numerical simulation. Three kinds of grid multiscroll chaotic attractors are generated based on one-dimensional multiscroll Chua system. The dynamics of the multiscroll chaotic attractors are analyzed by means of equilibrium points, eigenvalues, the largest Lyapunov exponent and complexity. As the experimental verification, we implemented the circular grid multiscroll attractor on DSP platform. The simulation and experimental results are consistent well with that of theoretical analysis, and it shows that the design approaches are effective.


2020 ◽  
Vol 49 (2) ◽  
pp. 317-332
Author(s):  
Aixue Qi ◽  
Lei Ding ◽  
Wenbo Liu

We propose a meminductor-based chaotic system. Theoretical analysis and numerical simulations reveal complex dynamical behaviors of the proposed meminductor-based chaotic system with five unstable equilibrium points and three different states of chaotic attractors in its phase trajectory with only a single change in circuit parameter. Lyapunov exponents, bifurcation diagrams, and phase portraits are used to investigate its complex chaotic and multi-stability behaviors, including its coexisting chaotic, periodic and point attractors. The proposed meminductor-based chaotic system was implemented using analog integrators, inverters, summers, and multipliers. PSPICE simulation results verified different chaotic characteristics of the proposed circuit with a single change in a resistor value.


2019 ◽  
Vol 29 (09) ◽  
pp. 1950117 ◽  
Author(s):  
Xin Zhang ◽  
Chunhua Wang

Based on the study on Jerk chaotic system, a multiscroll hyperchaotic system with hidden attractors is proposed in this paper, which has infinite number of equilibriums. The chaotic system can generate [Formula: see text] scroll hyperchaotic hidden attractors. The dynamic characteristics of the multiscroll hyperchaotic system with hidden attractors are analyzed by means of dynamic analysis methods such as Lyapunov exponents and bifurcation diagram. In addition, we have studied the synchronization of the system by applying an adaptive control method. The hardware experiment of the proposed multiscroll hyperchaotic system with hidden attractors is carried out using discrete components. The hardware experimental results are consistent with the numerical simulation results of MATLAB and the theoretical analysis results.


2010 ◽  
Vol 40-41 ◽  
pp. 924-929
Author(s):  
Yong Yi Mao ◽  
Zi Chao Deng

In this paper, a new method is proposed for image encryption by using Transformed Logistic map and Cat map. First, the Transformed logistic map is used to generating two coordinate sequences, and then the primary image's pixels shuffled by the two coordinate sequences. After shuffling, the key stream is produced by the Cat map to encrypt the shuffled image. Theoretical analysis and experimental results indicate that the proposed algorithm has a perfect encryption effect and can resist common attacks


2021 ◽  
Vol 2 (1) ◽  
pp. 55-66
Author(s):  
Muhamad Deni Johansyah

This work introduces a new 3-D chaotic system with a line of equilibrium points. We carry out a detailed dynamic analysis of the proposed chaotic system with five nonlinear terms. We show that the chaotic system exhibits multistability with two coexisting chaotic attractors. We apply integral sliding mode control for the complete synchronization of the new chaotic system with itself as leader-follower systems.


2014 ◽  
Vol 971-973 ◽  
pp. 1485-1490
Author(s):  
Yin Dan Han ◽  
Jiang Feng Xu

This paper proposed a new database watermarking algorithm based on a numerical attribute of database. Firstly, the copyright image was encrypted by a chaotic system to produce a binary sequence as the watermark signal. Then it used two hash functions to realize the watermark embedding. The first hash value was calculated by using the connection value of the key and the primary key. Then it filtered out the tuples whose corresponding hash value was even. The second double-hash value was calculated by using the connection of the key and the first hash value, which was used to label tuples and partition tuples. The first hash value was used as a control signal to adjust the parity of the candidate attribute bit when the watermark was embedded. Theoretical analysis and experimental results indicate that the algorithm reduces the amount of embedding watermark and improves the robustness and security of the watermark.


1966 ◽  
Author(s):  
R. ERICKSEN ◽  
J. GUITERAS ◽  
J. LARRIVEE

Sign in / Sign up

Export Citation Format

Share Document