The Influence of Dirichlet Boundary Conditions on the Dynamics for a Diffusive Predator–Prey System

2019 ◽  
Vol 29 (09) ◽  
pp. 1950113
Author(s):  
Jun Jiang ◽  
Jinfeng Wang ◽  
Yingwei Song

A reaction–diffusion predator–prey system with homogeneous Dirichlet boundary conditions describes the lethal risk of predator and prey species on the boundary. The spatial pattern formations with the homogeneous Dirichlet boundary conditions are characterized by the Turing type linear instability of homogeneous state and bifurcation theory. Compared with homogeneous Neumann boundary conditions, we see that the homogeneous Dirichlet boundary conditions may depress the spatial patterns produced through the diffusion-induced instability. In addition, the existence of semi-trivial steady states and the global stability of the trivial steady state are characterized by the comparison technique.

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Kwangjoong Kim ◽  
Wonhyung Choi ◽  
Inkyung Ahn

<p style='text-indent:20px;'>In this study, we consider a Lotka–Volterra reaction–diffusion–advection model for two competing species under homogeneous Dirichlet boundary conditions, describing a hostile environment at the boundary. In particular, we deal with the case in which one species diffuses at a constant rate, whereas the other species has a constant rate diffusion rate with a directed movement toward a better habitat in a heterogeneous environment with a lethal boundary. By analyzing linearized eigenvalue problems from the system, we conclude that the species dispersion in the advection direction is not always beneficial, and survival may be determined by the convexity of the environment. Further, we obtain the coexistence of steady-states to the system under the instability conditions of two semi-trivial solutions and the uniqueness of the coexistence steady states, implying the global asymptotic stability of the positive steady-state.</p>


2016 ◽  
Vol 26 (11) ◽  
pp. 2071-2109 ◽  
Author(s):  
Johannes Lankeit

We consider the coupled chemotaxis Navier–Stokes model with logistic source terms: [Formula: see text] [Formula: see text] [Formula: see text] in a bounded, smooth domain [Formula: see text] under homogeneous Neumann boundary conditions for [Formula: see text] and [Formula: see text] and homogeneous Dirichlet boundary conditions for [Formula: see text] and with given functions [Formula: see text] satisfying certain decay conditions and [Formula: see text] for some [Formula: see text]. We construct weak solutions and prove that after some waiting time they become smooth and finally converge to the semi-trivial steady state [Formula: see text].


2014 ◽  
Vol 3 (S1) ◽  
pp. s37-s45 ◽  
Author(s):  
Pietro d'Avenia ◽  
Lorenzo Pisani ◽  
Gaetano Siciliano

AbstractThis paper deals with the Klein–Gordon–Maxwell system in a bounded spatial domain with a nonuniform coupling. We discuss the existence of standing waves in equilibrium with a purely electrostatic field, assuming homogeneous Dirichlet boundary conditions on the matter field and nonhomogeneous Neumann boundary conditions on the electric potential. Under suitable conditions we prove existence and nonexistence results. Since the system is variational, we use Ljusternik–Schnirelmann theory.


1993 ◽  
Vol 123 (6) ◽  
pp. 1151-1163
Author(s):  
Joel D. Avrin

SynopsisWe consider three models of multiple-step combustion processes on bounded spatial domains. Previously, steady-state convergence results have been established for these models with zero Neumann boundary conditions imposed on the temperature as well as the mass fractions. We retain here throughout the same boundary conditions on the mass fractions, but in our first set of results we establish steady-state convergence results with fixed Dirichlet boundary conditions on the temperature. Next, under certain physically reasonable assumptions, we develop, for two of the models, estimates on the decay rates of both mass fractions to zero, while for the remaining model we develop estimates on the decay rate of one concentration to zero and establish a positive lower bound on the other mass fraction. These results hold under either set of boundary conditions, but when the Dirichlet conditions are imposed on the temperature, we are able to obtain estimates on the rate of convergence of the temperature to its (generally nonconstant) steady-state. Finally, we improve the results of a previous paper by adding a temperature convergence result.


2011 ◽  
Vol 141 (6) ◽  
pp. 1279-1294 ◽  
Author(s):  
Marius Ghergu

We study the elliptic system −Δu = δ(x)−avp in Ω, −Δv = δ(x)−buq in Ω, subject to homogeneous Dirichlet boundary conditions. Here, Ω ⊂ ℝN, N ≥ 1, is a smooth and bounded domain, δ(x) = dist(x, ∂Ω), a, b ≥ 0 and p, q ∈ ℝ satisfy pq > −1. The existence, non-existence and uniqueness of solutions are investigated in terms of a, b, p and q.


Sign in / Sign up

Export Citation Format

Share Document