Coexistence of Two-Dimensional Attractors in Border Collision Normal Form

2019 ◽  
Vol 29 (09) ◽  
pp. 1950126
Author(s):  
Chi Hong Wong ◽  
Xue Yang

The two-dimensional border collision normal form is considered. It is known that multiple attractors can exist in this piecewise smooth system. We show that in appropriate parameter regions there can be a robust transition from a stable fixed point to multiple coexisting attractors with toological dimensions equal to two.

1987 ◽  
Vol 01 (05n06) ◽  
pp. 239-244
Author(s):  
SERGE GALAM

A new mechanism to explain the first order ferroelastic—ferroelectric transition in Terbium Molybdate (TMO) is presented. From group theory analysis it is shown that in the two-dimensional parameter space ordering along either an axis or a diagonal is forbidden. These symmetry-imposed singularities are found to make the unique stable fixed point not accessible for TMO. A continuous transition even if allowed within Landau theory is thus impossible once fluctuations are included. The TMO transition is therefore always first order. This explanation is supported by experimental results.


2018 ◽  
Vol 28 (04) ◽  
pp. 1830011
Author(s):  
Mio Kobayashi ◽  
Tetsuya Yoshinaga

A one-dimensional Gaussian map defined by a Gaussian function describes a discrete-time dynamical system. Chaotic behavior can be observed in both Gaussian and logistic maps. This study analyzes the bifurcation structure corresponding to the fixed and periodic points of a coupled system comprising two Gaussian maps. The bifurcation structure of a mutually coupled Gaussian map is more complex than that of a mutually coupled logistic map. In a coupled Gaussian map, it was confirmed that after a stable fixed point or stable periodic points became unstable through the bifurcation, the points were able to recover their stability while the system parameters were changing. Moreover, we investigated a parameter region in which symmetric and asymmetric stable fixed points coexisted. Asymmetric unstable fixed point was generated by the [Formula: see text]-type branching of a symmetric stable fixed point. The stability of the unstable fixed point could be recovered through period-doubling and tangent bifurcations. Furthermore, a homoclinic structure related to the occurrence of chaotic behavior and invariant closed curves caused by two-periodic points was observed. The mutually coupled Gaussian map was merely a two-dimensional dynamical system; however, chaotic itinerancy, known to be a characteristic property associated with high-dimensional dynamical systems, was observed. The bifurcation structure of the mutually coupled Gaussian map clearly elucidates the mechanism of chaotic itinerancy generation in the two-dimensional coupled map. We discussed this mechanism by comparing the bifurcation structures of the Gaussian and logistic maps.


2018 ◽  
Vol 18 (1) ◽  
pp. 315-332
Author(s):  
J.-P. Françoise ◽  
Hongjun Ji ◽  
Dongmei Xiao ◽  
Jiang Yu

2021 ◽  
Vol 31 (03) ◽  
pp. 2150047
Author(s):  
Liping Zhang ◽  
Haibo Jiang ◽  
Yang Liu ◽  
Zhouchao Wei ◽  
Qinsheng Bi

This paper reports the complex dynamics of a class of two-dimensional maps containing hidden attractors via linear augmentation. Firstly, the method of linear augmentation for continuous dynamical systems is generalized to discrete dynamical systems. Then three cases of a class of two-dimensional maps that exhibit hidden dynamics, the maps with no fixed point and the maps with one stable fixed point, are studied. Our numerical simulations show the effectiveness of the linear augmentation method. As the coupling strength of the controller increases or decreases, hidden attractor can be annihilated or altered to be self-excited, and multistability of the map can be controlled to being bistable or monostable.


2016 ◽  
Vol 26 (01) ◽  
pp. 1650014
Author(s):  
Shuangbao Li ◽  
Wensai Ma ◽  
Wei Zhang ◽  
Yuxin Hao

In this paper, we extend the well-known Melnikov method for smooth systems to a class of planar hybrid piecewise-smooth systems, defined in three domains separated by two switching manifolds [Formula: see text] and [Formula: see text]. The dynamics in each domain is governed by a smooth system. When an orbit reaches the separation lines, then a reset map describing an impacting rule applies instantaneously before the orbit enters into another domain. We assume that the unperturbed system has a continuum of periodic orbits transversally crossing the separation lines. Then, we wish to study the persistence of the periodic orbits under an autonomous perturbation and the reset map. To achieve this objective, we first choose four appropriate switching sections and build a Poincaré map, after that, we present a displacement function and carry on the Taylor expansion of the displacement function to the first-order in the perturbation parameter [Formula: see text] near [Formula: see text]. We denote the first coefficient in the expansion as the first-order Melnikov function whose zeros provide us the persistence of periodic orbits under perturbation. Finally, we study periodic orbits of a concrete planar hybrid piecewise-smooth system by the obtained Melnikov function.


Sign in / Sign up

Export Citation Format

Share Document