On Existence and Bifurcations of Periodic Motions in Discontinuous Dynamical Systems

2021 ◽  
Vol 31 (04) ◽  
pp. 2150063
Author(s):  
Siyu Guo ◽  
Albert C. J. Luo

In this paper, the existence and bifurcations of periodic motions in a discontinuous dynamical system is studied through a discontinuous mechanical model. One can follow the study presented herein to investigate other discontinuous dynamical systems. Such a sampled discontinuous system consists of two subsystems on boundaries and three subsystems in subdomains. From the theory of discontinuous dynamical systems, switchability conditions of a flow at and on the boundaries are developed. From such switchability conditions, grazing motions of a flow at boundaries are discussed, and sliding motions of a flow on boundaries are presented. Based on the motions in each domain and on each boundary, generic mappings are introduced. Using the generic mappings, mapping structures for specific periodic motions are developed. Based on the grazing conditions and appearance and vanishing conditions of sliding motions, parametric dynamics of the existences of the specific periodic motions are presented. In addition, the traditional saddle-node bifurcation, Neimark bifurcations and period-doubling bifurcation are used for parametric dynamics of periodic motions. Bifurcation trees of periodic motions varying with a system parameter are presented first, and phase trajectories of periodic motions are illustrated. The [Formula: see text]-functions are presented for the illustration of the motion switchability at the boundaries and sliding motions on the boundaries. Codimension-2 parametric dynamics of periodic motions are studied and how to develop the 2D parametric maps for specific periodic motions are presented. In the end, periodic motions with grazing are illustrated.

Author(s):  
Siyu Guo ◽  
Albert C. J. Luo

Abstract In this paper, periodic motions in a discontinuous dynamical systems are studied. The discontinuous dynamical system has three domains partitioned through two circular boundaries. On the three domains, there are three distinct dynamical systems. From the G-functions, the switchability conditions of a flow from one domain to anther domain at the boundary are developed. The flow mappings from a boundary to a bounbary are developed for each domain and boundary. From the mapping structures, periodic motions in the discontinuous dynamical system are predicted. Numerical simulations of periodic motions and motion switchability at boundaries are presented in the discontinuous dynamical system.


2013 ◽  
Vol 23 (03) ◽  
pp. 1330009 ◽  
Author(s):  
ALBERT C. J. LUO ◽  
MOZHDEH S. FARAJI MOSADMAN

In this paper, the analytical dynamics for singularity, switchability, and bifurcations of a 2-DOF friction-induced oscillator is investigated. The analytical conditions of the domain flow switchability at the boundaries and edges are developed from the theory of discontinuous dynamical systems, and the switchability conditions of boundary flows from domain and edge flows are presented. From the singularity and switchability of flow to the boundary, grazing, sliding and edge bifurcations are obtained. For a better understanding of the motion complexity of such a frictional oscillator, switching sets and mappings are introduced, and mapping structures for periodic motions are adopted. Using an eigenvalue analysis, the stability and bifurcation analysis of periodic motions in the friction-induced system is carried out. Analytical predictions and parameter maps of periodic motions are performed. Illustrations of periodic motions and the analytical conditions are completed. The analytical conditions and methodology can be applied to the multi-degrees-of-freedom frictional oscillators in the same fashion.


Author(s):  
Siyu Guo ◽  
Albert C. J. Luo

Abstract In this paper, periodic motions in an autonomous system with a discontinuous vector field are discussed. The periodic motions are obtained by constructing a set of algebraic equations based on motion mapping structures. The stability of periodic motions is investigated through eigenvalue analysis. The grazing bifurcations are presented by varying the spring stiffness. Once the grazing bifurcation occurs, periodic motions switches from the old motion to a new one. Numerical simulations are conducted for motion illustrations. The parameter study helps one understand autonomous discontinuous dynamical systems.


Author(s):  
Albert C. J. Luo ◽  
Dennis O’Connor

Nonlinear dynamical behaviors of a train suspension system with impacts are investigated. The suspension system is modelled through an impact model with possible stick between a bolster and two wedges. Based on the mapping structures, periodic motions of such a system are described. To understand the global dynamical behaviors of the train suspension system, system parameter maps are developed. Numerical simulations for periodic and chaotic motions are performed from the parameter maps.


Author(s):  
Yu Guo ◽  
Albert C. J. Luo

In this paper, the theory of flow switchability for discontinuous dynamical systems is applied. Domains and boundaries for such a discontinuous problem are defined and analytical conditions for motion switching are developed. The conditions explain the important role of switching phase on the motion switchability in such a system. To describe different motions, the generic mappings and mapping structures are introduced. Bifurcation scenarios for periodic and chaotic motions are presented for different motions and switchability. Numerical simulations are provided for periodic motions with impacts only and with impact chatter to stick in the system.


Author(s):  
Siyu Guo ◽  
Albert C. J. Luo

Abstract In this paper, studied are periodic motions with grazing in a discontinuous dynamical system with two circular boundaries. The grazing motion is for a periodic motion switching to another periodic motions. Thus, the sufficient and necessary conditions of motion switching, grazing and sliding on the boundaries are discussed first. Periodic motions with grazing in the discontinuous system are presented for illustration of motions switching.


Author(s):  
Albert C. J. Luo ◽  
Chuanping Liu

Abstract In this paper, symmetric periodic motions with different excitation periods in a discontinuous dynamic system with a hyperbolic boundary are presented analytically. The switchability conditions of flows at the hyperbolic boundaries are developed. Periodic motions with specific mapping structures are predicted analytically, and numerical simulations of periodic motions are carried out. The corresponding G-functions are presented for illustration of motion switchability at the hyperbolic boundaries.


Author(s):  
Médéric Argentina ◽  
Pierre Coullet ◽  
Jean-Marc Gilli ◽  
Marc Monticelli ◽  
Germain Rousseaux

Robert Hooke is perhaps one of the first scientists to have met chaotic motions. Indeed, to invert a cone and let a ball move in it was a mechanical model used by him to mimic the motion of a planet around a centre of force like the Sun. However, as the cone is inclined with respect to the gravity field, the perfect rosace followed by the particle becomes chaotic meanderings. We revisit this classical experiment designed by Hooke with the modern tools of dynamical systems and chaos theory. By a combination of both numerical simulations and experiments, we prove that the scenario of transition to the chaotic behaviour is through a period-doubling instability.


Author(s):  
Brandon C. Gegg ◽  
Steve S. Suh ◽  
Albert C. J. Luo

In this paper, a two-degree of freedom dynamical system with discontinuity is developed to describe the vibration in the cutting process. The analytical solutions for the switchability of motion on the discontinuous boundary are presented. the switching sets based on the discontinuous boundary is introduced and the basic mappings are introduced to investigate periodic motion in such a mechanical model. The mapping structures for the stick and non-stick motions are discussed. Numerical predictions of motions of the machine tool in the cutting process are presented through the two-degree of freedom system with discontinuity. The phase trajectory and velocity and force responses are presented and the switchability of motion on the discontinuous boundary is illustrated through force distribution and force product on the boundary.


2018 ◽  
Vol 2018 ◽  
pp. 1-33 ◽  
Author(s):  
Jinjun Fan ◽  
Ping Liu ◽  
Tianyi Liu ◽  
Shan Xue ◽  
Zhaoxia Yang

This paper develops the passability conditions of flow to the discontinuous boundary and the sticking or sliding and grazing conditions to the separation boundary in the discontinuous dynamical system of a friction-induced oscillator with an elliptic control law and the friction force acting on the mass M through the analysis of the corresponding vector fields and G-functions. The periodic motions of such a discontinuous system are predicted analytically through the mapping structure. Finally, the numerical simulations are given to illustrate the analytical results of motion for a better understanding of physics of motion in the mass-spring-damper oscillator.


Sign in / Sign up

Export Citation Format

Share Document