Synchronization of a Memristor Chaotic System and Image Encryption

2021 ◽  
Vol 31 (16) ◽  
Author(s):  
Haoyu Li ◽  
Leimin Wang ◽  
Qiang Lai

In this paper, a sliding-mode-based controller is designed for finite-time synchronization of Memristor Chaotic Systems (MCSs). It demonstrates that the synchronization errors of the MCSs reach the designed sliding-mode surface within a finite time and the finite-time stability is achieved on the surface, which implies that the finite-time synchronization for MCSs is achieved by employing the proposed sliding-mode-based controller. Furthermore, a new image encryption algorithm is proposed and implemented based on the results of finite-time synchronization. Finally, the numerical simulation and the corresponding statistical performance analysis are presented to verify the practicability, effectiveness and superiority of the presented sliding-mode-based controller and encryption algorithm, especially their potential applications in secure communication.

2021 ◽  
Author(s):  
Leimin Wang ◽  
Shan Jiang ◽  
Ming-Feng Ge ◽  
Junhao Hu

Abstract This paper proposes a sliding-mode-based unified control framework to solve the synchronization problem of memristor chaotic systems. Both finite- and fixed-time synchronization of the memristor chaotic systems can be obtained in the uniform framework. According to the Lyapunov stability and finite-time stability theories, we demonstrate that the trajectories of error system reach the presented sliding-mode surface and converge to the origin along the surface in a finite/fixed time. Moreover, an image encryption algorithm is developed based on the presented control framework. Finally, the numerical simulations and the statistical performance analyses are discussed to illustrate the correctness of synchronization results, the effectiveness of the proposed encryption algorithm, and its potential applications in the scope of secure communication.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 258
Author(s):  
Heping Wen ◽  
Chongfu Zhang ◽  
Lan Huang ◽  
Juxin Ke ◽  
Dongqing Xiong

Fractional-order chaos has complex dynamic behavior characteristics, so its application in secure communication has attracted much attention. Compared with the design of fractional-order chaos-based cipher, there are fewer researches on security analysis. This paper conducts a comprehensive security analysis of a color image encryption algorithm using a fractional-order hyperchaotic system (CIEA-FOHS). Experimental simulation based on excellent numerical statistical results supported that CIEA-FOHS is cryptographically secure. Yet, from the perspective of cryptanalysis, this paper found that CIEA-FOHS can be broken by a chosen-plaintext attack method owing to its some inherent security defects. Firstly, the diffusion part can be eliminated by choosing some special images with all the same pixel values. Secondly, the permutation-only part can be deciphered by some chosen plain images and the corresponding cipher images. Finally, using the equivalent diffusion and permutation keys obtained in the previous two steps, the original plain image can be recovered from a target cipher image. Theoretical analysis and experimental simulations show that the attack method is both effective and efficient. To enhance the security, some suggestions for improvement are given. The reported results would help the designers of chaotic cryptography pay more attention to the gap of complex chaotic system and secure cryptosystem.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Zhang-Lin Wan ◽  
Yi-You Hou ◽  
Teh-Lu Liao ◽  
Jun-Juh Yan

This paper considers the problem of partial finite-time synchronization between switched stochastic Chua's circuits accompanied by a time-driven switching law. Based on the Ito formula and Lyapunov stability theory, a sliding-mode controller is developed to guarantee the synchronization of switched stochastic master-slave Chua's circuits and for the mean of error states to obtain the partial finite-time stability. Numerical simulations demonstrate the effectiveness of the proposed methods.


Author(s):  
Yongjian Liu ◽  
Lijie Li ◽  
Yu Feng

The finite-time synchronization for the high-dimensional chaotic system is studied. A method is derived from the finite-time stability theory and adaptive control technique. To show the wider applicability of our method, an illustration is given using four-dimensional (4D) hyperchaotic systems. Numerical simulations are also used to verify the effectiveness of the technique. Then, the synchronization is applied to secure communication through chaos masking. Simulation results show that the two high-dimensional chaotic systems can realize monotonous synchronization, and the information signal, which is masked, can be recovered undistortedly.


2020 ◽  
Vol 38 (3B) ◽  
pp. 98-103
Author(s):  
Atyaf S. Hamad ◽  
Alaa K. Farhan

This research presents a method of image encryption that has been designed based on the algorithm of complete shuffling, transformation of substitution box, and predicated image crypto-system. This proposed algorithm presents extra confusion in the first phase because of including an S-box based on using substitution by AES algorithm in encryption and its inverse in Decryption. In the second phase, shifting and rotation were used based on secrete key in each channel depending on the result from the chaotic map, 2D logistic map and the output was processed and used for the encryption algorithm. It is known from earlier studies that simple encryption of images based on the scheme of shuffling is insecure in the face of chosen cipher text attacks. Later, an extended algorithm has been projected. This algorithm performs well against chosen cipher text attacks. In addition, the proposed approach was analyzed for NPCR, UACI (Unified Average Changing Intensity), and Entropy analysis for determining its strength.


2019 ◽  
Vol 38 (3) ◽  
pp. 647-678 ◽  
Author(s):  
Ľuboš Ovseník ◽  
Ján Turán ◽  
Tomáš Huszaník ◽  
Jakub Oravec ◽  
Ondrej Kováč ◽  
...  

2009 ◽  
Vol 29 (8) ◽  
pp. 2210-2212
Author(s):  
Shi-yue LAI ◽  
Xiao-feng LIAO ◽  
Qing ZHOU

Sign in / Sign up

Export Citation Format

Share Document