THE WORD PROBLEM FOR SOME VARIETIES OF SOLVABLE LIE ALGEBRAS

1994 ◽  
Vol 04 (03) ◽  
pp. 481-491
Author(s):  
O. KHARLAMPOVICH ◽  
D. GILDENHUYS

The word problem is said to be solvable in a variety of Lie algebras if it is solvable in every algebra, finitely presented in this variety. Let [Formula: see text] denote the variety of (2-step nilpotent)-by-abelian Lie algebra and [Formula: see text] the variety of abelian-by-(2-step nilpotent) Lie algebras. It is proved that the word problem is unsolvable in the “interval” of varieties containing the variety [Formula: see text] (of centre-by-[Formula: see text] Lie algebras over a field of characteristic zero), and contained in the variety [Formula: see text].

Author(s):  
E. M. Patterson

SynopsisBy examining certain connections between the derivatives and the powers of a Lie algebra, bounds are obtained for the indices of nilpotent Lie algebras over an arbitrary field. The results are used to obtain bounds for the indices of solvable Lie algebras over a field of characteristic zero.


2020 ◽  
Vol 12 (1) ◽  
pp. 189-198
Author(s):  
Y.Y. Chapovskyi ◽  
L.Z. Mashchenko ◽  
A.P. Petravchuk

Let $\mathbb K$ be a field of characteristic zero, $A$ be an integral domain over $\mathbb K$ with the field of fractions $R=Frac(A),$ and $Der_{\mathbb K}A$ be the Lie algebra of all $\mathbb K$-derivations on $A$. Let $W(A):=RDer_{\mathbb K} A$ and $L$ be a nilpotent subalgebra of rank $n$ over $R$ of the Lie algebra $W(A).$ We prove that if the center $Z=Z(L)$ is of rank $\geq n-2$ over $R$ and $F=F(L)$ is the field of constants for $L$ in $R,$ then the Lie algebra $FL$ is contained in a locally nilpotent subalgebra of $ W(A)$ of rank $n$ over $R$ with a natural basis over the field $R.$ It is also proved that the Lie algebra $FL$ can be isomorphically embedded (as an abstract Lie algebra) into the triangular Lie algebra $u_n(F)$, which was studied early by other authors.


2020 ◽  
Vol 2020 ◽  
pp. 1-4
Author(s):  
Özge Öztekin

Let L be the free nilpotent Lie algebra of finite rank over a field of characteristic zero. We define the concepts of marginal ideals and marginal automorphisms of L, and we give some results on marginal automorphisms.


2014 ◽  
Vol 14 (02) ◽  
pp. 1550024
Author(s):  
Guillermo Ames ◽  
Leandro Cagliero ◽  
Mónica Cruz

If 𝔫 is a [Formula: see text]-graded nilpotent finite-dimensional Lie algebra over a field of characteristic zero, a well-known result of Deninger and Singhof states that dim H*(𝔫) ≥ L(p) where p is the polynomial associated to the grading and L(p) is the sum of the absolute values of the coefficients of p. From this result they derived the Toral Rank Conjecture (TRC) for 2-step nilpotent Lie algebras. An algebraic version of the TRC states that dim H*(𝔫) ≥ 2 dim (ℨ) for any finite-dimensional nilpotent Lie algebra 𝔫 with center ℨ. The TRC is more than 25 years old and remains open even for [Formula: see text]-graded 3-step nilpotent Lie algebras. Investigating to what extent the bound given by Deninger and Singhof could help to prove the TRC in this case, we considered the following two questions regarding a nilpotent Lie algebra 𝔫 with center ℨ: (A) If 𝔫 admits a [Formula: see text]-grading [Formula: see text], such that its associated polynomial p satisfies L(p) > 2 dim ℨ, does 𝔫 admit a ℤ+-grading [Formula: see text] such that its associated polynomial p′ satisfies L(p′) > 2 dim ℨ? (B) If 𝔫 is r-step nilpotent admitting a grading 𝔫 = 𝔫1 ⊕ 𝔫2 ⊕ ⋯ ⊕ 𝔫k such that its associated polynomial p satisfies L(p) > 2 dim ℨ, does 𝔫 admit a grading [Formula: see text] such that its associated polynomial p′ satisfies L(p′) > 2 dim ℨ? In this paper we show that the answer to (A) is yes, but the answer to (B) is no.


2017 ◽  
Vol 16 (11) ◽  
pp. 1750205
Author(s):  
Özge Öztekin ◽  
Naime Ekici

Let [Formula: see text] be the free nilpotent Lie algebra of finite rank [Formula: see text] [Formula: see text] and nilpotency class [Formula: see text] over a field of characteristic zero. We give a characterization of central automorphisms of [Formula: see text] and we find sufficient conditions for an automorphism of [Formula: see text] to be a central automorphism.


2007 ◽  
Vol 17 (03) ◽  
pp. 527-555 ◽  
Author(s):  
YOU'AN CAO ◽  
DEZHI JIANG ◽  
JUNYING WANG

Let L be a finite-dimensional complex simple Lie algebra, Lℤ be the ℤ-span of a Chevalley basis of L and LR = R⊗ℤLℤ be a Chevalley algebra of type L over a commutative ring R. Let [Formula: see text] be the nilpotent subalgebra of LR spanned by the root vectors associated with positive roots. The aim of this paper is to determine the automorphism group of [Formula: see text].


2003 ◽  
Vol 12 (05) ◽  
pp. 589-604
Author(s):  
Hideaki Nishihara

Weight systems are constructed with solvable Lie algebras and their infinite dimensional representations. With a Heisenberg Lie algebra and its polynomial representations, the derived weight system vanishes on Jacobi diagrams with positive loop-degree on a circle, and it is proved that the derived knot invariant is the inverse of the Alexander-Conway polynomial.


2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Michel Goze ◽  
Elisabeth Remm

AbstractThe classification of complex or real finite dimensional Lie algebras which are not semi simple is still in its early stages. For example, the nilpotent Lie algebras are classified only up to dimension 7. Moreover, to recognize a given Lie algebra in the classification list is not so easy. In this work, we propose a different approach to this problem. We determine families for some fixed invariants and the classification follows by a deformation process or a contraction process. We focus on the case of 2- and 3-step nilpotent Lie algebras. We describe in both cases a deformation cohomology for this type of algebras and the algebras which are rigid with respect to this cohomology. Other


2018 ◽  
Vol 83 (3) ◽  
pp. 1204-1216 ◽  
Author(s):  
OLGA KHARLAMPOVICH ◽  
ALEXEI MYASNIKOV

AbstractLet R be a commutative integral unital domain and L a free noncommutative Lie algebra over R. In this article we show that the ring R and its action on L are 0-interpretable in L, viewed as a ring with the standard ring language $+ , \cdot ,0$. Furthermore, if R has characteristic zero then we prove that the elementary theory $Th\left( L \right)$ of L in the standard ring language is undecidable. To do so we show that the arithmetic ${\Bbb N} = \langle {\Bbb N}, + , \cdot ,0\rangle $ is 0-interpretable in L. This implies that the theory of $Th\left( L \right)$ has the independence property. These results answer some old questions on model theory of free Lie algebras.


Sign in / Sign up

Export Citation Format

Share Document