scholarly journals A ternary Cahn–Hilliard–Navier–Stokes model for two-phase flow with precipitation and dissolution

Author(s):  
Christian Rohde ◽  
Lars von Wolff

We consider the incompressible flow of two immiscible fluids in the presence of a solid phase that undergoes changes in time due to precipitation and dissolution effects. Based on a seminal sharp interface model a phase-field approach is suggested that couples the Navier–Stokes equations and the solid’s ion concentration transport equation with the Cahn–Hilliard evolution for the phase fields. The model is shown to preserve the fundamental conservation constraints and to obey the second law of thermodynamics for a novel free energy formulation. An extended analysis for vanishing interfacial width reveals that in this limit the sharp interface model is recovered, including all relevant transmission conditions. Notably, the new phase-field model is able to realize Navier-slip conditions for solid–fluid interfaces in the limit.

2017 ◽  
Vol 29 (1) ◽  
pp. 118-145 ◽  
Author(s):  
E. MECA ◽  
A. MÜNCH ◽  
B. WAGNER

In this study, we present a phase-field model that describes the process of intercalation of Li ions into a layer of an amorphous solid such as amorphous silicon (a-Si). The governing equations couple a viscous Cahn–Hilliard-Reaction model with elasticity in the framework of the Cahn–Larché system. We discuss the parameter settings and flux conditions at the free boundary that lead to the formation of phase boundaries having a sharp gradient in lithium ion concentration between the initial state of the solid layer and the intercalated region. We carry out a matched asymptotic analysis to derive the corresponding sharp-interface model that also takes into account the dynamics of triple points where the sharp interface intersects the free boundary of the Si layer. We numerically compare the interface motion predicted by the sharp-interface model with the long-time dynamics of the phase-field model.


2007 ◽  
Vol 18 (04) ◽  
pp. 536-545 ◽  
Author(s):  
NAOKI TAKADA ◽  
AKIO TOMIYAMA

For interface-tracking simulation of two-phase flows in various micro-fluidics devices, we examined the applicability of two versions of computational fluid dynamics method, NS-PFM, combining Navier-Stokes equations with phase-field modeling for interface based on the van der Waals-Cahn-Hilliard free-energy theory. Through the numerical simulations, the following major findings were obtained: (1) The first version of NS-PFM gives good predictions of interfacial shapes and motions in an incompressible, isothermal two-phase fluid with high density ratio on solid surface with heterogeneous wettability. (2) The second version successfully captures liquid-vapor motions with heat and mass transfer across interfaces in phase change of a non-ideal fluid around the critical point.


2020 ◽  
Vol 229 (19-20) ◽  
pp. 2899-2909
Author(s):  
L. V. Toropova ◽  
P. K. Galenko ◽  
D. V. Alexandrov ◽  
M. Rettenmayr ◽  
A. Kao ◽  
...  

Author(s):  
Long Thanh Le

In this study, the numerical computation is used to investigate the transient thermocapillary migration of a water droplet in a Microchannel. For tracking the evolution of the free interface between two immiscible fluids, we employed the finite element method with the two-phase level set technique to solve the Navier-Stokes equations coupled with the energy equation. Both the upper wall and the bottom wall of the microchannel are set to be an ambient temperature. The heat source is placed at the left side of a water droplet. When the heat source is turned on, a pair of asymmetric thermocapillary convection vortices is formed inside the droplet and the thermocapillary on the receding side is smaller than that on the advancing side. The temperature gradient inside the droplet increases quickly at the initial times and then decreases versus time. Therefore, the actuation velocity of the water droplet first increases significantly, and then decreases continuously. The dynamic contact angle is strongly affected by the oil flow motion and the net thermocapillary momentum inside the droplet. The advancing contact angle is always larger than the receding contact angle during actuation process.


2010 ◽  
Vol 20 (07) ◽  
pp. 1129-1160 ◽  
Author(s):  
EDUARD FEIREISL ◽  
HANA PETZELTOVÁ ◽  
ELISABETTA ROCCA ◽  
GIULIO SCHIMPERNA

A model describing the evolution of a binary mixture of compressible, viscous, and macroscopically immiscible fluids is investigated. The existence of global-in-time weak solutions for the resulting system coupling the compressible Navier–Stokes equations governing the motion of the mixture with the Allen–Cahn equation for the order parameter is proved without any restriction on the size of initial data.


Author(s):  
Solmaz Torabi ◽  
John Lowengrub ◽  
Axel Voigt ◽  
Steven Wise

We present a new phase-field model for strongly anisotropic crystal and epitaxial growth using regularized, anisotropic Cahn–Hilliard-type equations. Such problems arise during the growth and coarsening of thin films. When the anisotropic surface energy is sufficiently strong, sharp corners form and unregularized anisotropic Cahn–Hilliard equations become ill-posed. Our models contain a high-order Willmore regularization, where the square of the mean curvature is added to the energy, to remove the ill-posedness. The regularized equations are sixth order in space. A key feature of our approach is the development of a new formulation in which the interface thickness is independent of crystallographic orientation. Using the method of matched asymptotic expansions, we show the convergence of our phase-field model to the general sharp-interface model. We present two- and three-dimensional numerical results using an adaptive, nonlinear multigrid finite-difference method. We find excellent agreement between the dynamics of the new phase-field model and the sharp-interface model. The computed equilibrium shapes using the new model also match a recently developed analytical sharp-interface theory that describes the rounding of the sharp corners by the Willmore regularization.


Sign in / Sign up

Export Citation Format

Share Document