scholarly journals THE CO-HOPFIAN PROPERTY OF SURFACE BRAID GROUPS

2013 ◽  
Vol 22 (10) ◽  
pp. 1350055 ◽  
Author(s):  
YOSHIKATA KIDA ◽  
SAEKO YAMAGATA

Let g and n be integers at least 2, and let G be the pure braid group with n strands on a closed orientable surface of genus g. We describe any injective homomorphism from a finite index subgroup of G into G. As a consequence, we show that any finite index subgroup of G is co-Hopfian.

Author(s):  
Thomas Haettel

Abstract We give a conjectural classification of virtually cocompactly cubulated Artin–Tits groups (i.e., having a finite index subgroup acting geometrically on a CAT(0) cube complex), which we prove for all Artin–Tits groups of spherical type, FC type, or two-dimensional type. A particular case is that for $n \geqslant 4$, the $n$-strand braid group is not virtually cocompactly cubulated.


2020 ◽  
pp. 1-10
Author(s):  
MARK GRANT ◽  
AGATA SIENICKA

Abstract The closure of a braid in a closed orientable surface Ʃ is a link in Ʃ × S1. We classify such closed surface braids up to isotopy and homeomorphism (with a small indeterminacy for isotopy of closed sphere braids), algebraically in terms of the surface braid group. We find that in positive genus, braids close to isotopic links if and only if they are conjugate, and close to homeomorphic links if and only if they are in the same orbit of the outer action of the mapping class group on the surface braid group modulo its centre.


2020 ◽  
Vol 29 (01) ◽  
pp. 1950097
Author(s):  
Jacob Mostovoy ◽  
Christopher Roque-Márquez

The group of planar (or flat) pure braids on [Formula: see text] strands, also known as the pure twin group, is the fundamental group of the configuration space [Formula: see text] of [Formula: see text] labeled points in [Formula: see text] no three of which coincide. The planar pure braid groups on 3, 4 and 5 strands are free. In this note, we describe the planar pure braid group on 6 strands: it is a free product of the free group on 71 generators and 20 copies of the free abelian group of rank two.


2005 ◽  
Vol 14 (08) ◽  
pp. 1087-1098 ◽  
Author(s):  
VALERIJ G. BARDAKOV

We construct a linear representation of the group IA (Fn) of IA-automorphisms of a free group Fn, an extension of the Gassner representation of the pure braid group Pn. Although the problem of faithfulness of the Gassner representation is still open for n > 3, we prove that the restriction of our representation to the group of basis conjugating automorphisms Cbn contains a non-trivial kernel even if n = 2. We construct also an extension of the Burau representation to the group of conjugating automorphisms Cn. This representation is not faithful for n ≥ 2.


2020 ◽  
Vol 30 (5) ◽  
pp. 1439-1463
Author(s):  
Richard C. H. Webb

AbstractWe prove that almost all arc complexes do not admit a CAT(0) metric with finitely many shapes, in particular any finite-index subgroup of the mapping class group does not preserve such a metric on the arc complex. We also show the analogous statement for all but finitely many disc complexes of handlebodies and free splitting complexes of free groups. The obstruction is combinatorial. These complexes are all hyperbolic and contractible but despite this we show that they satisfy no combinatorial isoperimetric inequality: for any n there is a loop of length 4 that only bounds discs consisting of at least n triangles. On the other hand we show that the curve complexes satisfy a linear combinatorial isoperimetric inequality, which answers a question of Andrew Putman.


2013 ◽  
Vol 156 (1) ◽  
pp. 115-121
Author(s):  
ANITHA THILLAISUNDARAM

AbstractIn a previous paper, Button and Thillaisundaram proved that all finitely presented groups of p-deficiency greater than one are p-large. Here we prove that groups with a finite presentation of p-deficiency one possess a finite index subgroup that surjects onto the integers. This implies that these groups do not have Kazhdan's property (T). Additionally, we show that the aforementioned result of Button and Thillaisundaram implies a result of Lackenby.


2013 ◽  
Vol 34 (3) ◽  
pp. 837-853 ◽  
Author(s):  
YAIR HARTMAN ◽  
YURI LIMA ◽  
OMER TAMUZ

AbstractLet $(G, \mu )$ be a discrete group equipped with a generating probability measure, and let $\Gamma $ be a finite index subgroup of $G$. A $\mu $-random walk on $G$, starting from the identity, returns to $\Gamma $ with probability one. Let $\theta $ be the hitting measure, or the distribution of the position in which the random walk first hits $\Gamma $. We prove that the Furstenberg entropy of a $(G, \mu )$-stationary space, with respect to the action of $(\Gamma , \theta )$, is equal to the Furstenberg entropy with respect to the action of $(G, \mu )$, times the index of $\Gamma $ in $G$. The index is shown to be equal to the expected return time to $\Gamma $. As a corollary, when applied to the Furstenberg–Poisson boundary of $(G, \mu )$, we prove that the random walk entropy of $(\Gamma , \theta )$ is equal to the random walk entropy of $(G, \mu )$, times the index of $\Gamma $ in $G$.


2012 ◽  
Vol 22 (03) ◽  
pp. 1250026
Author(s):  
UZY HADAD

We prove that for any finite index subgroup Γ in SL n(ℤ), there exists k = k(n) ∈ ℕ, ϵ = ϵ(Γ) > 0, and an infinite family of finite index subgroups in Γ with a Kazhdan constant greater than ϵ with respect to a generating set of order k. On the other hand, we prove that for any finite index subgroup Γ of SL n(ℤ), and for any ϵ > 0 and k ∈ ℕ, there exists a finite index subgroup Γ′ ≤ Γ such that the Kazhdan constant of any finite index subgroup in Γ′ is less than ϵ, with respect to any generating set of order k. In addition, we prove that the Kazhdan constant of the principal congruence subgroup Γn(m), with respect to a generating set consisting of elementary matrices (and their conjugates), is greater than [Formula: see text], where c > 0 depends only on n. For a fixed n, this bound is asymptotically best possible.


2015 ◽  
Vol 26 (09) ◽  
pp. 1550066 ◽  
Author(s):  
Michael Brandenbursky

Let Σg be a closed orientable surface of genus g and let Diff 0(Σg, area ) be the identity component of the group of area-preserving diffeomorphisms of Σg. In this paper, we present the extension of Gambaudo–Ghys construction to the case of a closed hyperbolic surface Σg, i.e. we show that every nontrivial homogeneous quasi-morphism on the braid group on n strings of Σg defines a nontrivial homogeneous quasi-morphism on the group Diff 0(Σg, area ). As a consequence we give another proof of the fact that the space of homogeneous quasi-morphisms on Diff 0(Σg, area ) is infinite-dimensional. Let Ham (Σg) be the group of Hamiltonian diffeomorphisms of Σg. As an application of the above construction we construct two injective homomorphisms Zm → Ham (Σg), which are bi-Lipschitz with respect to the word metric on Zm and the autonomous and fragmentation metrics on Ham (Σg). In addition, we construct a new infinite family of Calabi quasi-morphisms on Ham (Σg).


2014 ◽  
Vol 17 (1) ◽  
pp. 206-208
Author(s):  
Thomas Hamilton ◽  
David Loeffler

AbstractWe give a computationally effective criterion for determining whether a finite-index subgroup of $\mathrm{SL}_2(\mathbf{Z})$ is a congruence subgroup, extending earlier work of Hsu for subgroups of $\mathrm{PSL}_2(\mathbf{Z})$.


Sign in / Sign up

Export Citation Format

Share Document