BRANE–ANTIBRANE INFLATION

2002 ◽  
Vol 11 (10) ◽  
pp. 1597-1601 ◽  
Author(s):  
C. P. BURGESS

Inflationary cosmology has become central to our understanding of the initial conditions on whose foundations the current successes of the Hot Big Bang model rest. This is despite the well-known difficulties in finding systems whose dynamics naturally provide all of the features which successful inflation demands. Although string theory provides our best description of the physics of the relevant energy scales, it has only recently begun to shed insight into what the inflationary dynamics might be: the physics of brane-antibrane collisions. This essay is meant to summarize the difficulties which have blocked this realization until now, as well as the new insights about inflation which are now beginning to emerge.

Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 276
Author(s):  
Muhammad Zahid Mughal ◽  
Iftikhar Ahmad ◽  
Juan Luis García Guirao

In this review article, the study of the development of relativistic cosmology and the introduction of inflation in it as an exponentially expanding early phase of the universe is carried out. We study the properties of the standard cosmological model developed in the framework of relativistic cosmology and the geometric structure of spacetime connected coherently with it. The geometric properties of space and spacetime ingrained into the standard model of cosmology are investigated in addition. The big bang model of the beginning of the universe is based on the standard model which succumbed to failure in explaining the flatness and the large-scale homogeneity of the universe as demonstrated by observational evidence. These cosmological problems were resolved by introducing a brief acceleratedly expanding phase in the very early universe known as inflation. The cosmic inflation by setting the initial conditions of the standard big bang model resolves these problems of the theory. We discuss how the inflationary paradigm solves these problems by proposing the fast expansion period in the early universe. Further inflation and dark energy in fR modified gravity are also reviewed.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter addresses the problem of fine-tuning the initial conditions of the previous chapter’s hot Big Bang model, so that the universe has the observed properties, as well as the problem of the origin of large-scale structure. It shows that these problems are related to each other, and can be solved by assuming a period of accelerated expansion in the earliest history of the universe. Since the 1980s, the general acceptance of this idea of a primordial inflationary phase can be considered as the third phase in the history of the development of relativistic cosmology. The chapter first outlines the issues with the hot Big Bang model: the flatness problem; the Big Bang horizon, and monopole problems; and the problem of the origin of the large-scale structure. It then provides a solution in the form of inflation, and goes on to discuss ‘chaotic’ inflation.


Author(s):  
Muhammad Zahid Mughal ◽  
Iftikhar Ahmad ◽  
Juan Luis GARCÍA GUIRAO

In this review article the study of the development of relativistic cosmology and introduction of inflation in it is carried out. We study the properties of standard cosmological model developed in the framework of relativistic cosmology and the geometric structure of spacetime connected coherently with it. We examine the geometric properties of space and spacetime ingrained into the standard model of cosmology. The big bang model of the beginning of the universe is based on the standard model which succumbed to failure in explaining the flatness and the large-scale homogeneity of the universe as demonstrated by observational evidence. These cosmological problems were resolved by introducing a brief acceleratedly expanding phase in the very early universe known as inflation. Cosmic inflation by setting the initial conditions of the standard big bang model resolves these problems of the theory. We discuss how the inflationary paradigm solves these problems by proposing the fast expansion period in the early universe.


2020 ◽  
Vol 17 (1 Jan-Jun) ◽  
pp. 73 ◽  
Author(s):  
J. Alberto Vazquez Gonzalez ◽  
Luis E. Padilla ◽  
Tonatiuh Matos

The main aim of this paper is to provide a qualitative introduction to the cosmological inflation theory and its relationship with current cosmological observations. The inflationary model solves many of the fundamental problemsthat challenge the Standard Big Bang cosmology such as the Flatness, Horizon and the magnetic Monopole problems. Additionally it provides an explanation for the initial conditions observed throughout the Large-Scale Structure of the Universe, such as galaxies. In this review we describe general solutions to the problems in the Big Bang cosmology carry out by a single scalar eld. Then, with the use of current surveys, we show the constraints imposed on the inflationary parameters (ns; r) which allow us to make the connection between theoretical and observational cosmology. In this way, with the latest results, it is possible to select or at least to constrain the right inflationary model, parameterized by a single scalar eld potential V (\phi).


2004 ◽  
Vol 19 (10) ◽  
pp. 727-743 ◽  
Author(s):  
P. C. W. DAVIES

Recent advances in string theory and inflationary cosmology have led to a surge of interest in the possible existence of an ensemble of cosmic regions, or "universes", among the members of which key physical parameters, such as the masses of elementary particles and the coupling constants, might assume different values. The observed values in our cosmic region are then attributed to an observer selection effect (the so-called anthropic principle). The assemblage of universes has been dubbed "the multiverse". In this paper we review the multiverse concept and the criticisms that have been advanced against it on both scientific and philosophical grounds.


2006 ◽  
Vol 84 (6-7) ◽  
pp. 437-446
Author(s):  
R H Brandenberger

In spite of the phenomenological successes of the inflationary universe scenario, the current realizations of inflation making use of scalar fields lead to serious conceptual problems that are reviewed in this lecture. String theory may provide an avenue towards addressing these problems. One particular approach to combining string theory and cosmology is String Gas Cosmology. The basic principles of this approach are summarized.PACS No.: 98.80.Cq}


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. SCI-37-SCI-37
Author(s):  
Christina Curtis

Abstract Cancer results from the acquisition of somatic alterations in an evolutionary process that typically occurs over many years, much of which is occult. Understanding the evolutionary dynamics that are operative at different stages of progression in individual tumors might inform the earlier detection, diagnosis, and treatment of cancer. For decades, tumor progression has been described as a gradual stepwise process, and it is through this lens that the underlying mechanisms have been interpreted and therapeutic strategies have been developed. Although these processes cannot be directly observed, the resultant spatiotemporal patterns of genetic variation amongst tumor cells encode their evolutionary histories. Cancer genome sequencing has thus yielded unprecedented insights into intra-tumor heterogeneity (ITH) and these data enable the inference of tumor dynamics using population genetics techniques. The application of such approaches suggests that tumor evolution is not necessarily gradual, but rather can be punctuated, resulting in revision of the de facto sequential clonal expansion model. For example, we previously described a Big Bang model of human colorectal tumor growth, wherein after transformation the neoplasm grows predominantly as a single terminal expansion in the absence of stringent selection, compatible with effectively neutral evolution1. In the Big Bang model, the timing of a mutation is the fundamental determinant of its frequency in the final tumor such that all major clones persist during growth and most detectable intra-tumor heterogeneity (ITH) occurs early. By analyzing multi-region and single gland genomic profiles in colorectal adenomas and carcinomas within a spatial agent-based tumor growth model and Bayesian statistical inference framework, we demonstrated the early origin of ITH and verified several other predictions of the Big Bang model. This new model provides a quantitative framework for understanding tumor progression with several clinical implications. In particular, rare but potentially aggressive subclones may be undetectable, providing a rich substrate for the emergence of resistance under treatment selective pressure. These data also suggest that some tumors may be born to be bad, wherein malignant potential is specified early. While not all tumors exhibit Big Bang dynamics, effectively neutral evolution has since been reported in other tumors and hence may be relatively common. These findings emphasize the need for methods to infer the role of selection in established human tumors and the systematic evaluation of distinct modes of evolution across tumor types and disease stages. To address this need, we developed an extensible population genetics framework to simulate spatial tumor growth and evaluate evidence for different evolutionary modes based on patterns of genetic variation derived from multi-region sequencing (MRS) data2. We demonstrate that while it is feasible to distinguish strong positive selection from neutral tumor evolution, weak selection and neutral evolution were indistinguishable in current data. Building on these findings, we developed a classifier that exploits novel measures of ITH and applied this to MRS data from diverse tumor types, revealing different evolutionary modes amongst treatment naïve tumors. To better understand evolutionary tempos during disease progression, we further characterized longitudinally sampled specimens. These findings have implications for forecasting tumor evolution and designing more effective treatment strategies. 1. Sottoriva A, Kang H, Ma Z, et al. A Big Bang model of human colorectal tumor growth. Nature Genetics. 2015;47:209-16. 2. Sun R, Hu Z, Sottoriva A, et al. Between-region genetic divergence reflects the mode and tempo of tumor evolution. Nature Genetics. 2017;49:1015-24. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Bao-Fei Li ◽  
Parampreet Singh ◽  
Anzhong Wang

In this paper, we first provide a brief review of the effective dynamics of two recently well-studied models of modified loop quantum cosmologies (mLQCs), which arise from different regularizations of the Hamiltonian constraint and show the robustness of a generic resolution of the big bang singularity, replaced by a quantum bounce due to non-perturbative Planck scale effects. As in loop quantum cosmology (LQC), in these modified models the slow-roll inflation happens generically. We consider the cosmological perturbations following the dressed and hybrid approaches and clarify some subtle issues regarding the ambiguity of the extension of the effective potential of the scalar perturbations across the quantum bounce, and the choice of initial conditions. Both of the modified regularizations yield primordial power spectra that are consistent with current observations for the Starobinsky potential within the framework of either the dressed or the hybrid approach. But differences in primordial power spectra are identified among the mLQCs and LQC. In addition, for mLQC-I, striking differences arise between the dressed and hybrid approaches in the infrared and oscillatory regimes. While the differences between the two modified models can be attributed to differences in the Planck scale physics, the permissible choices of the initial conditions and the differences between the two perturbation approaches have been reported for the first time. All these differences, due to either the different regularizations or the different perturbation approaches in principle can be observed in terms of non-Gaussianities.


Author(s):  
Mairi Sakellariadou

Cosmic superstrings are expected to be formed at the end of brane inflation, within the context of brane-world cosmological models inspired from string theory. By studying the properties of cosmic superstring networks and comparing their phenomenological consequences against observational data, we aim to pin down the successful and natural inflationary model and get an insight into the stringy description of our Universe.


Sign in / Sign up

Export Citation Format

Share Document