scholarly journals QUASINORMAL MODES AND LATE-TIME TAILS OF CANONICAL ACOUSTIC BLACK HOLES

2007 ◽  
Vol 16 (07) ◽  
pp. 1211-1218 ◽  
Author(s):  
PING XI ◽  
XIN-ZHOU LI

In this paper, we investigate the evolution of classical wave propagation in the canonical acoustic black hole by a numerical method and discuss the details of the tail phenomenon. The oscillating frequency and damping time scale both increase with the angular momentum l. For lower l, numerical results show the lowest WKB approximation gives the most reliable result. We also find that the time scale of the interim region from ringing to tail is not affected obviously by changing l.

2020 ◽  
Vol 80 (10) ◽  
Author(s):  
Ángel Rincón ◽  
Victor Santos

AbstractIn this work, we investigate the quasinormal frequencies of a class of regular black hole solutions which generalize Bardeen and Hayward spacetimes. In particular, we analyze scalar, vector and gravitational perturbations of the black hole with the semianalytic WKB method. We analyze in detail the behaviour of the spectrum depending on the parameter p/q of the black hole, the quantum number of angular momentum and the s number. In addition, we compare our results with the classical solution valid for $$p = q = 1$$ p = q = 1 .


Author(s):  
Abhrajit Bhattacharjee ◽  
Sandip Kumar Chakrabarti ◽  
Dipak Debnath

Abstract Spectral and timing properties of accretion flows on a black hole depend on their density and temperature distributions, which, in turn come from the underlying dynamics. Thus, an accurate description of the flow which includes hydrodynamics and radiative transfer is a must to interpret the observational results. In the case of non-rotating black holes, Pseudo- Newtonian description of surrounding space-time enables one to make a significant progress in predicting spectral and timing properties. This formalism is lacking for the spinning black holes. In this paper, we show that there exists an exact form of ‘natural’ potential derivable from the general relativistic (GR) radial momentum equation written in the local corotating frame. Use of this potential in an otherwise Newtonian set of equations, allows us to describe transonic flows very accurately as is evidenced by comparing with solutions obtained from the full GR framework. We study the properties of the sonic points and the centrifugal pressure supported shocks in the parameter space spanned by the specific energy and the angular momentum, and compare with the results of GR hydrodynamics. We show that this potential can safely be used for the entire range of Kerr parameter −1 < a < 1 for modeling of observational results around spinning black holes. We assume the flow to be inviscid. Thus, it is non-dissipative with constant energy and angular momentum. These assumptions are valid very close to the black hole horizon as the infall time scale is much shorter as compared to the viscous time scale.


Universe ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 3
Author(s):  
Fan Zhang

Utilizing the tools of tendex and vortex, we study the highly dynamic plunge and merger phases of several π -symmetric binary black hole coalescences. In particular, we observe a decline of the strength of the current quadrupole moment compared to that of the mass quadrupole moment during the merger phase, contrary to a naive estimate according to the dependence of these moments on the separation between the black holes. We further show that this decline of the current quadrupole moment is achieved through the remnants of the two individual spins becoming nearly aligned or anti-aligned with the total angular momentum. We also speculate on the ability to achieve a consistency between the electric and magnetic parity quasinormal modes.


2016 ◽  
Vol 12 (S324) ◽  
pp. 23-26
Author(s):  
Petra Suková ◽  
Szymon Charzyński ◽  
Agnieszka Janiuk

AbstractWe present recent results of the studies of low angular momentum accretion of matter onto Schwarzschild black hole using fully relativistic numerical simulations. We compare the resulting 2D structure of transonic flows with results of 1D pseudo-Newtonian computations of non-magnetized flow. The research has observable consequences on black holes on the whole mass scale, in particular it is related to the time-scale and shape of luminosity flares in Sgr A* or to the evolution of QPO frequency during outbursts of microquasars.


2020 ◽  
Vol 35 (23) ◽  
pp. 2050193
Author(s):  
Cai-Ying Shao ◽  
Yu Hu ◽  
Yu-Jie Tan ◽  
Cheng-Gang Shao ◽  
Kai Lin ◽  
...  

In this paper, we study the quasinormal modes of the massless Dirac field for charged black holes in Rastall gravity. The spherically symmetric black hole solutions in question are characterized by the presence of a power-Maxwell field, surrounded by the quintessence fluid. The calculations are carried out by employing the WKB approximations up to the 13th-order, as well as the matrix method. The temporal evolution of the quasinormal modes is investigated by using the finite difference method. Through numerical simulations, the properties of the quasinormal frequencies are analyzed, including those for the extremal black holes. Among others, we explore the case of a second type of extremal black holes regarding the Nariai solution, where the cosmical and event horizon coincide. The results obtained by the WKB approaches are found to be mostly consistent with those by the matrix method. It is observed that the magnitudes of both real and imaginary parts of the quasinormal frequencies increase with increasing [Formula: see text], the spin–orbit quantum number. Also, the roles of the parameters [Formula: see text] and [Formula: see text], associated with the electric charge and the equation of state of the quintessence field, respectively, are investigated regarding their effects on the quasinormal frequencies. The magnitude of the electric charge is found to sensitively affect the time scale of the first stage of quasinormal oscillations, after which the temporal oscillations become stabilized. It is demonstrated that the black hole solutions for Rastall gravity in asymptotically flat spacetimes are equivalent to those in Einstein gravity, featured by different asymptotical spacetime properties. As one of its possible consequences, we also investigate the behavior of the late-time tails of quasinormal models in the present model. It is found that the asymptotical behavior of the late-time tails of quasinormal modes in Rastall theory is governed by the asymptotical properties of the spacetimes of their counterparts in Einstein gravity.


2004 ◽  
Vol 70 (12) ◽  
Author(s):  
Emanuele Berti ◽  
Vitor Cardoso ◽  
José P. S. Lemos

1997 ◽  
Vol 163 ◽  
pp. 620-625 ◽  
Author(s):  
H. Ford ◽  
Z. Tsvetanov ◽  
L. Ferrarese ◽  
G. Kriss ◽  
W. Jaffe ◽  
...  

AbstractHST images have led to the discovery that small (r ~ 1″ r ~ 100 – 200 pc), well-defined, gaseous disks are common in the nuclei of elliptical galaxies. Measurements of rotational velocities in the disks provide a means to measure the central mass and search for massive black holes in the parent galaxies. The minor axes of these disks are closely aligned with the directions of the large–scale radio jets, suggesting that it is angular momentum of the disk rather than that of the black hole that determines the direction of the radio jets. Because the disks are directly observable, we can study the disks themselves, and investigate important questions which cannot be directly addressed with observations of the smaller and unresolved central accretion disks. In this paper we summarize what has been learned to date in this rapidly unfolding new field.


2021 ◽  
Vol 263 (6) ◽  
pp. 548-555
Author(s):  
Xiaoqi Zhang ◽  
Li Cheng

Acoustic black holes (ABHs) have been so far investigated mainly for bending wave ma-nipulation in mechanical structures such as beams or plates. The investigations on ABHs for sound wave manipulation, referred to as Sonic black holes (SBHs) are scarce. Existing SBH structure for sound reduction in air is typically formed by putting a set of rings inside a duct wall with decreasing inner radius according to a power law. As such, the structure is very complex and difficult to be practically realized, which hampers the practical application of SBHs for sound reduction. This study explores the possibilities of achieving SBH effects using other types of structural configurations. In particular, micro-perforated panels are proposed to be introduced into the conventional SBH structure, and the simulation results show that the new formed SBH structure is simpler in configuration in terms of number of rings and more efficient in terms of sound energy trapping and dissipation.


2013 ◽  
Vol 22 (02) ◽  
pp. 1330001 ◽  
Author(s):  
YONGJOON KWON ◽  
SOONKEON NAM

From the quasinormal modes (QNM) of black holes, we obtain the quantizations of the entropy and horizon area of black holes via Bohr–Sommerfeld quantization, based on Bohr's correspondence principle. For this, we identify the appropriate action variable of the classical system corresponding to a black hole. By considering the BTZ black holes in topologically massive gravity as well as Einstein gravity, it is found that the spectra of not the horizon areas but the entropies of black holes are equally spaced. We also propose that other characteristic modes of black holes, which are non-QNM or holographic QNM, can be used in quantization of entropy spectra just like QNM. From these modes, it is found that only the entropy spectrum of the warped AdS3 black hole is equally spaced as well. Furthermore, by considering a scattering problem in a black hole, we propose that the total transmission modes and total reflection modes of black holes can be regarded as characteristic modes of black holes and result in the equally spaced entropy of the Kerr and Reissner–Nordström black holes. Finally, we conclude that there is a universal behavior that the entropy spectra of various black holes are equally spaced.


Author(s):  
Bo Gao ◽  
Xue-Mei Deng

The neutral time-like particle’s bound orbits around modified Hayward black holes have been investigated. We find that both in the marginally bound orbits (MBO) and the innermost stable circular orbits (ISCO), the test particle’s radius and its angular momentum are all more sensitive to one of the parameters [Formula: see text]. Especially, modified Hayward black holes with [Formula: see text] could mimic the same ISCO radius around the Kerr black hole with the spin parameter up to [Formula: see text]. Small [Formula: see text] could mimic the ISCO of small-spinning test particles around Schwarzschild black holes. Meanwhile, rational (periodic) orbits around modified Hayward black holes have also been studied. The epicyclic frequencies of the quasi-circular motion around modified Hayward black holes are calculated and discussed with respect to the observed Quasi-periodic oscillations (QPOs) frequencies. Our results show that rational orbits around modified Hayward black holes have different values of the energy from the ones of Schwarzschild black holes. The epicyclic frequencies in modified Hayward black holes have different frequencies from Schwarzschild and Kerr ones. These might provide hints for distinguishing modified Hayward black holes from Schwarzschild and Kerr ones by using the dynamics of time-like particles around the strong gravitational field.


Sign in / Sign up

Export Citation Format

Share Document