Bound orbits around modified Hayward black holes

Author(s):  
Bo Gao ◽  
Xue-Mei Deng

The neutral time-like particle’s bound orbits around modified Hayward black holes have been investigated. We find that both in the marginally bound orbits (MBO) and the innermost stable circular orbits (ISCO), the test particle’s radius and its angular momentum are all more sensitive to one of the parameters [Formula: see text]. Especially, modified Hayward black holes with [Formula: see text] could mimic the same ISCO radius around the Kerr black hole with the spin parameter up to [Formula: see text]. Small [Formula: see text] could mimic the ISCO of small-spinning test particles around Schwarzschild black holes. Meanwhile, rational (periodic) orbits around modified Hayward black holes have also been studied. The epicyclic frequencies of the quasi-circular motion around modified Hayward black holes are calculated and discussed with respect to the observed Quasi-periodic oscillations (QPOs) frequencies. Our results show that rational orbits around modified Hayward black holes have different values of the energy from the ones of Schwarzschild black holes. The epicyclic frequencies in modified Hayward black holes have different frequencies from Schwarzschild and Kerr ones. These might provide hints for distinguishing modified Hayward black holes from Schwarzschild and Kerr ones by using the dynamics of time-like particles around the strong gravitational field.

2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Misbah Shahzadi ◽  
Martin Kološ ◽  
Zdeněk Stuchlík ◽  
Yousaf Habib

AbstractThe study of the quasi-periodic oscillations (QPOs) of X-ray flux observed in the stellar-mass black hole (BH) binaries or quasars can provide a powerful tool for testing the phenomena occurring in strong gravity regime. We thus fit the data of QPOs observed in the well known microquasars as well as active galactic nuclei (AGNs) in the framework of the model of geodesic oscillations of Keplerian disks modified for the epicyclic oscillations of spinning test particles orbiting Kerr BHs. We show that the modified geodesic models of QPOs can explain the observational fixed data from the microquasars and AGNs but not for all sources. We perform a successful fitting of the high frequency QPOs models of epicyclic resonance and its variants, relativistic precession and its variants, tidal disruption, as well as warped disc models, and discuss the corresponding constraints of parameters of the model, which are the spin of the test particle, mass and rotation of the BH.


2014 ◽  
Vol 29 (29) ◽  
pp. 1450144 ◽  
Author(s):  
Yu Zhang ◽  
Jin-Ling Geng ◽  
En-Kun Li

In this paper, we study the orbital dynamics of the gravitational field of stringy black holes by analyzing the effective potential and the phase plane diagram. By solving the equation of Lagrangian, the general relativistic equations of motion in the gravitational field of stringy black holes are given. It is easy to find that the motion of test particles depends on the energy and angular momentum of the test particles. Using the phase plane analysis method and combining the conditions of the stability, we discuss different types of the test particles' orbits in the gravitational field of stringy black holes. We get the innermost stable circular orbit which occurs at r min = 5.47422 and when the angular momentum b ≤ 4.3887 the test particles will fall into the black hole.


2009 ◽  
Vol 24 (04) ◽  
pp. 719-739 ◽  
Author(s):  
M. KALAM ◽  
F. RAHAMAN ◽  
A. GHOSH ◽  
B. RAYCHAUDHURI

Several physical natures of charged brane-world black holes are investigated. Firstly, the timelike and null geodesics of the charged brane-world black holes are presented. We also analyze all the possible motions by plotting the effective potentials for various parameters for circular and radial geodesics. Secondly, we investigate the motion of test particles in the gravitational field of the charged brane-world black holes using the Hamilton–Jacobi formalism. We consider charged and uncharged test particles and examine their behavior in both static and nonstatic cases. Thirdly, the thermodynamics of the charged brane-world black holes are studied. Finally, it is shown that there is no phenomenon of superradiance for an incident massless scalar field for such a black hole.


2016 ◽  
Vol 31 (35) ◽  
pp. 1650204
Author(s):  
Soon-Tae Hong

In the presence of a rotating Kerr black hole, we investigate hydrodynamics of the massive particles and massless photons to construct relations among number density, pressure and internal energy density of the massive particles and photons around the rotating Kerr black hole and to study an accretion onto the black hole. On equatorial plane of the Kerr black hole, we investigate the bound orbits of the massive particles and photons around the black hole to produce their radial, azimuthal and precession frequencies. With these frequencies, we study the black holes GRO J1655-40 and 4U 1543-47 to explicitly obtain the radial, azimuthal and precession frequencies of the massive particles in the flow of perfect fluid. We next consider the massive particles in the stable circular orbit of radius of 1.0 ly around the supernovas SN 1979C, SN 1987A and SN 2213-1745 in the Kerr curved spacetime, and around the potential supermassive Schwarzschild black holes M87, NGC 3115, NGC 4594, NGC 3377, NGC 4258, M31, M32 and Galatic center, to estimate their radial and azimuthal frequencies, which are shown to be the same results as those in no precession motion. The photon unstable orbit is also discussed in terms of the impact parameter of the photon trajectory. Finally, on the equatorial plane of the Kerr black hole, we construct the global flat embedding structures possessing (9 + 3) dimensionalities outside and inside the event horizon of the rotating Kerr black hole. Moreover, on the plane, we investigate the warp products of the Kerr spacetime.


2020 ◽  
Author(s):  
Deep Bhattacharjee

This paper is totally based on the mathematical physics of the Black holes. In Einstein’s theory of “General Relativity”, Schwarzschild solution is the vacuum solutions of the Einstein Field Equations that describes the gravity potential from outside the body of a spherically symmetric object having zero charge, zero mass and zero cosmological constant[1]. It was discovered by Karl Schwarzschild in 1916, a little more than a month after the publication of the famous GR and the singularity is a point singularity which can be best described as a coordinate singularity rather than a real singularity, however, the drawback of this theory is that it fails to take into account the real life scenario of black holes with charge and spin angular momentum. The black hole is based on event horizon and Schwarzschild radius. However, Physicists were trying to develop a metric for the real life scenario of a black hole with a spin angular momen-tum and ultimately the exact solution of a charged rotating black hole had been discovered by Roy Kerr in 1965 as the Kerr-Newman metric[2][3]. The Kerr metric is one of the toughest metric in physics and is the extensional generalization to a rotating body of the Schwarzschild metric. The metric describes the vacuum geometry of space-time around a rotating axially-symmetric black hole with a quasipotential event horizon. In Kerr metric there are two event hori-zons (inner and outer), two ergospheres and an ergosurface. The most important effect of the Kerr metric is the frame dragging (also known as Lense-Thirring Precession) is a distinctive prediction of General relativity. The first direct observation of the collision of two Kerr Black Holes has been discovered by LIGO in 2016 hence setting up a milestone of General Relativity in the history of Physics. Here, the Kerr metric has been introduced in the Boyer-Lindquist forms and it is derived from the Schwarzschild metric using the Spin-Coefficient formalism. According to the “Cosmic Censorship Hypothesis”, a naked singularity cannot exist in nature as nature always hides the singularity via an event horizon. However, in this paper I will prove the existence of the “Naked Singularity" taking the advantage of the Ring Singularity of the Kerr Black Hole and thereby making the way to manipulate the mathematics by taking the larger root of Δ as zero and thereby vanishing the ergosphere and event horizon making the way for the naked ring singularity which can be easily connected via a cylindrical wormhole and as ‘a wormhole is a black hole without an event horizon’ therefore, this cylindrical connection paved the way for the Einstein-Rosen Bridge allowing particles or null rays to travel from one universe to another ending up in a future directed Cauchy horizon while changing constantly from spatial to temporal and again spatial paving the entrance to another Kerr Black hole (which would act as a white hole) in the other universes. I will not go in detail about the contradiction of ‘Chronology Protection Conjecture” [4]whether the Stress-Energy-Momentum Tensor can violate the ANEC (Average Null Energy Conditions) or not with the values of less than zero or greater than, equal to zero, instead I will focus definitely on the creation of the mathematical formulation of a wormhole from a Naked Ring Kerr Singularity of a Kerr Black Hole without any event horizon or ergosphere. Another important thing to mention in this paper is that I have taken the time to be imaginary[5] as because, a singularity being an eternal point of time can only be smoothen out if the time is imaginary rather than real which will allow the particle or null rays inside a wormhole to cross the singularity and making entrance to the other universe. The final conclusion would be to determine the mass-energy equivalence principle as spin angular momentum increases with a decrease in BH mass due to the vanishing event horizon and ergosphere thereby maintaining the equivalence via apparent and absolute masses in relation to spin J along the orthogonal Z axis. A ‘NAKED SINGULARITY’ alters every parameters of a BH and to include this parameters along with affine spin coefficient, it has been proved that without any spin angular momentum the generation of wormhole and vanishing of event horizon and singularity is not possible.


2014 ◽  
Vol 23 (07) ◽  
pp. 1450060 ◽  
Author(s):  
Vassil K. Tinchev ◽  
Stoytcho S. Yazadjiev

We examine the shadow cast by a Kerr black hole pierced by a cosmic string. The observable images depend not only on the black hole spin parameter and the angle of inclination, but also on the deficit angle yielded by the cosmic string. The dependence of the observable characteristics of the shadow on the deficit angle is explored. The imprints in the black hole shadow left by the presence of a cosmic string can serve in principle as a method for observational detection of such strings.


2017 ◽  
Vol 27 (01) ◽  
pp. 1750179 ◽  
Author(s):  
Wen-Biao Han ◽  
Shu-Cheng Yang

We report exotic orbital phenomena of spinning test particles orbiting around a Kerr black hole, i.e. some orbits of spinning particles are asymmetrical about the equatorial plane. When a nonspinning test particle orbits around a Kerr black hole in a strong field region, due to relativistic orbital precessions, the pattern of trajectories is symmetrical about the equatorial plane of the Kerr black hole. However, the patterns of the spinning particles’ orbit are no longer symmetrical about the equatorial plane for some orbital configurations and large spins. We argue that these asymmetrical patterns come from the spin–spin interactions between spinning particles and Kerr black holes, because the directions of spin–spin forces can be arbitrary, and distribute asymmetrically about the equatorial plane.


2018 ◽  
Vol 33 (23) ◽  
pp. 1850126
Author(s):  
Ravi Shankar Kuniyal ◽  
Hemwati Nandan ◽  
Uma Papnoi ◽  
Rashmi Uniyal ◽  
K. D. Purohit

We study the motion of massless test particles in a five-dimensional (5D) Myers–Perry black hole spacetime with two-spin parameters. The behavior of the effective potential in view of different values of black hole parameters is discussed in the equatorial plane. The frequency shift of photons is calculated which is found to depend on the spin parameter of black hole and the observed redshift is discussed accordingly. The deflection angle and the strong deflection limit coefficients are also calculated and their behavior with the spin parameters is analyzed in detail. It is observed that the behaviors of both deflection angle and strong field coefficient differs from Kerr black hole spacetime in four dimensions in General Relativity (GR), which is mainly due to the presence of two-spin parameters in higher dimension.


2016 ◽  
Vol 12 (S324) ◽  
pp. 45-46
Author(s):  
Vojtěch Witzany ◽  
Claus Lämmerzahl

AbstractSince the first investigations into accretion onto black holes, astrophysicists have proposed effective Newtonian-like potentials to mimic the strong-field behavior of matter near a Schwarzschild or Kerr black hole. On the other hand, the fields of neutron stars or black holes in many of the alternative gravity theories differ from the idealized Schwarzschild or Kerr field which would require a number of new potentials. To resolve this, we give a Newtonian-like Hamiltonian which almost perfectly mimics the behavior of test particles in any given stationary space-time. The properties of the Hamiltonian are excellent in static space-times such as the Schwarzschild black hole, but become worse for space-times with gravito-magnetic or dragging effects such as near the Kerr black hole.


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
Haopeng Yan ◽  
Minyong Guo ◽  
Bin Chen

AbstractWe revisit monochromatic and isotropic photon emissions from the zero-angular-momentum sources (ZAMSs) near a Kerr black hole. We investigate the escape probability of the photons that can reach to infinity and study the energy shifts of these escaping photons, which could be expressed as the functions of the source radius and the black hole spin. We study the cases for generic source radius and black hole spin, but we pay special attention to the near-horizon (near-)extremal Kerr ((near-)NHEK) cases. We reproduce the relevant numerical results using a more efficient method and get new analytical results for (near-)extremal cases. The main non-trivial results are: in the NHEK region of a (near-)extremal Kerr black hole, the escape probability for a ZAMS tends to $$\frac{7}{24}\approx 29.17\%$$ 7 24 ≈ 29.17 % , independent of the NHEK radius; at the innermost of the photon shell (IPS) in the near-NHEK region, the escape probability for a ZAMS tends to $$\begin{aligned} \frac{5}{12} -\frac{1}{\sqrt{7}} + \frac{2}{\sqrt{7}\pi }\arctan \frac{1}{\sqrt{7}}\approx 12.57\% . \end{aligned}$$ 5 12 - 1 7 + 2 7 π arctan 1 7 ≈ 12.57 % .


Sign in / Sign up

Export Citation Format

Share Document