A DARKLESS SPACE–TIME

2008 ◽  
Vol 17 (02) ◽  
pp. 275-299 ◽  
Author(s):  
ANGELO TARTAGLIA ◽  
MONICA CAPONE

In cosmology it has become usual to introduce new entities as dark matter and dark energy in order to explain otherwise unexplained observational facts. Here, we propose a different approach treating space–time as a continuum endowed with properties similar to those of ordinary material continua, such as internal viscosity and strain distributions originated by defects in the texture. A Lagrangian modeled on the one valid for simple dissipative phenomena in fluids is built and used for empty space–time. The internal "viscosity" is shown to correspond to a four-vector field. The vector field is shown to be connected with the displacement vector field induced by a point defect in a four-dimensional continuum. Using the known symmetry of the universe, assuming the vector field to be divergenceless and solving the corresponding Euler–Lagrange equation, we directly obtain inflation and a phase of accelerated expansion of space–time. The only parameter in the theory is the "strength" of the defect. We show that it is possible to fix it in such a way as to also quantitatively reproduce the acceleration of the universe. We have finally verified that the addition of ordinary matter does not change the general behavior of the model and that the proper Newtonian limit exists.

2009 ◽  
Vol 24 (08n09) ◽  
pp. 1620-1624
Author(s):  
A. TARTAGLIA

The accelerated expansion of the universe is interpreted as an effect of a defect in space-time treated as a four-dimensional continuum endowed with physical properties. The analogy is with texture defects in material continua, like dislocations and disclinations, described in terms of a singular displacement vector field. A Lagrangian for empty space-time is proposed exploiting one further analogy between the phase space of a Robertson-Walker universe and the phase space of a point particle moving across an homogeneous isotropic medium. The model, named Cosmic Defect theory, produces, as a byproduct, also inflation near the initial singularity. The theory has been applied to fit the luminosity data of 192 type Ia supernovae. The results are satisfying and comparable with the ones obtained by means of the Λ Cold Dark Matter standard model.


2012 ◽  
Vol 27 (29) ◽  
pp. 1250164 ◽  
Author(s):  
V. K. SHCHIGOLEV

Cosmological models in Lyra's geometry are constructed and investigated with the assumption of a minimal interaction of matter with the displacement vector field and the dynamical Λ-term. Exact solutions of the model equations are obtained for the different equations of state of the matter, that fills the universe, and for the certain assumptions on the decaying law for Λ.


2019 ◽  
Vol 32 (3) ◽  
pp. 338-352
Author(s):  
Albert Zur (Albo)

In the proposed Energy String (ES) theory, we assume the existence of fundamental energy strings forming a generally Euclidean four-dimensional fabric of empty space as well as forming all types of particles in the universe. The 4D space fabric is composed of space energy strings bearing dark-energy as well as a newly described dark-momentum. Particles are composed of particle energy strings which interact with space energy strings inducing three-dimensional space curvatures embedded in a flat fourth-space dimension. The induced space curvatures are responsible for gravity of particles and assign a longitudinal and a transverse direction to particles. The proposed ES theory yields an adapted model of the universe with remarkable teachings as follows: (1) The fabric of space and related dark-energy are associated with a newly defined dark-momentum. This dark momentum is the sole contributor to the cosmological constant Λ in Einstein's field equations which describes the accelerated expansion of the universe. The energy of the quantum vacuum becomes nonrelevant to the cosmological constant Λ, enabling a solution to the “Cosmological Constant Problem”; (2) All particles perform an equal distance of translatory displacement in 4D-space, reflecting a universal displacement rate of particles relative to an absolute generally Euclidean 4D-space. This universal principle is equivalent to Lorentz transformation of a fundamental four-displacement vector, representing a new model of Special Relativity with superior compatibility to quantum theories. (3) Time is a displacement property of mass particles in 4D-space. Frames of 3D-space+time are the perspective by which mass particles experience 4D-space. In this perspective, absolute space longitudinally displaces over mass particles experienced as proper time elapse. Temporal momentum is an inherent invariant property of mass particles. Frames of 3D-space+time are mixed domains: three spatial coordinates of position-space and a temporal coordinate of momentum-space, meaning the position-space in the temporal coordinate is totally inaccessible.


2018 ◽  
Vol 24 (5) ◽  
pp. 1503-1529 ◽  
Author(s):  
Philippe G. Ciarlet ◽  
Cristinel Mardare ◽  
Paolo Piersanti

Our objective is to identify two-dimensional equations that model an obstacle problem for a linearly elastic elliptic membrane shell subjected to a confinement condition expressing that all the points of the admissible deformed configurations remain in a given half-space. To this end, we embed the shell into a family of linearly elastic elliptic membrane shells, all sharing the same middle surface [Formula: see text], where [Formula: see text] is a domain in [Formula: see text] and [Formula: see text] is a smooth enough immersion, all subjected to this confinement condition, and whose thickness [Formula: see text] is considered as a “small” parameter approaching zero. We then identify, and justify by means of a rigorous asymptotic analysis as [Formula: see text] approaches zero, the corresponding “limit” two-dimensional variational problem. This problem takes the form of a set of variational inequalities posed over a convex subset of the space [Formula: see text]. The confinement condition considered here considerably departs from the Signorini condition usually considered in the existing literature, where only the “lower face” of the shell is required to remain above the “horizontal” plane. Such a confinement condition renders the asymptotic analysis substantially more difficult, however, as the constraint now bears on a vector field, the displacement vector field of the reference configuration, instead of on only a single component of this field.


2011 ◽  
Vol 38 (5) ◽  
pp. 2318-2323 ◽  
Author(s):  
Nahla K. Saleh-Sayah ◽  
Elisabeth Weiss ◽  
Francisco J. Salguero ◽  
Jeffrey V. Siebers

2011 ◽  
Vol 03 ◽  
pp. 195-202
Author(s):  
M. D. MAIA

The concept of deformation of Riemannian geometry is reviewed, with applications to gravitation and cosmology. Starting with an analysis of the cosmological constant problem, it is shown that space-times are deformable in the sense of local change of shape. These deformations leave an observable signature in the space-time, characterized by a conserved tensor, associated with a tangent acceleration, defined by the extrinsic curvature of the space-time. In the applications to cosmology, we find that the accelerated expansion of the universe is the observable effect of the deformation, dispensing with the cosmological constant and its problems.


Sign in / Sign up

Export Citation Format

Share Document