STUDIES OF SUPERHEAVY ELEMENTS AT SHIP

2007 ◽  
Vol 16 (04) ◽  
pp. 937-947
Author(s):  
S. HOFMANN ◽  
D. ACKERMANN ◽  
S. ANTALIC ◽  
H. G. BURKHARD ◽  
V. F. COMAS ◽  
...  

An overview of present experimental investigation of superheavy elements is given. The data are compared with theoretical descriptions. Results are reported from an experiment to confirm production of element 112 isotopes in irradiation of 238 UF 4 with 48 Ca . One spontaneous fission event was measured, which agrees with three events of previously measured data which had been assigned to the decay of 283112. However, more experimental work is needed in order to obtain an independent and unambiguous confirmation of previous results.

1974 ◽  
Vol 10 (A) ◽  
pp. 60-64 ◽  
Author(s):  
J Randrup ◽  
S E Larsson ◽  
P Möller ◽  
A Sobiczewski ◽  
A Lukasaik

2020 ◽  
Vol 239 ◽  
pp. 05003
Author(s):  
R. Vogt ◽  
J. Randrup ◽  
P. Talou ◽  
J. T. Van Dyke ◽  
L. A. Bernstein

For many years, the state of the art for simulating fission in transport codes amounted to sampling from average distributions. However, such "average" fission models have limited capabilities. Energy is not explicitly conserved and no correlations are available because all particles are emitted independently. However, in a true fission event, the emitted particles are correlated. Recently, Monte Carlo codes generating complete fission events have been developed, thus allowing the use of event-by-event analysis techniques. Such techniques are particularly useful because the complete kinematic information is available for the fission products and the emitted neutrons and photons. It is therefore possible to extract any desired observables, including correlations. The fast event-by-event fission code FREYA (Fission Reaction Event Yield Algorithm) generates large samples of complete fission events, employing only a few physics-based parameters. A recent optimization of these parameters for the isotopes in FREYA that undergo spontaneous fission is described and results are presented. The sensitivity of neutron observables in FREYA to the input yield functions is also discussed and the correlation between the average neutron multiplicity and fragment total kinetic energy is quantified.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3217
Author(s):  
Yun Geng ◽  
Xiaofei Yao ◽  
Jinlong Dong ◽  
Xue Liu ◽  
Yingsan Geng ◽  
...  

The prestrike phenomenon in vacuum circuit breakers (VCBs) is interesting but complicated. Previous studies mainly focus on the prestrike phenomenon in single-break VCBs. However, experimental work on prestrike characteristics of double-break VCBs cannot be found in literature. This paper aims to experimentally determine the probabilistic characteristics of prestrike gaps in a double-break VCB consisting of two commercial vacuum interrupters (VIs) in series under direct current (DC) voltages. As a benchmark, single-break prestrike gaps were measured by short-circuiting one of the VIs in a double break. The experimental results show that the 50% prestrike gap d50 of each VI in a double break, which is calculated with the complementary Weibull distribution, was significantly reduced by 25% to 72.7% compared with that in a single break. Due to the voltage-sharing effect in the double-break VCB, scatters in prestrike gaps of each VI in a double break was smaller than that in a single break. However, without the sharing-voltage effect, d50 of the low-voltage side in the double break was 65% higher than that of the same VI in the single break, which could be caused by the asynchronous property of mechanical actuators, the difference of the inherent prestrike characteristics of each VI and the unequal voltage-sharing ratio of VIs.


2012 ◽  
Vol 256-259 ◽  
pp. 1097-1100
Author(s):  
Hee Chang Eun ◽  
Su Yong Park ◽  
Min Su Lee

This study investigates the effectiveness of the damage detection methods depending on the data measured by strain and deflection sensors. The experimental work considers the damage detection by measured data only without the baseline data of intact structure. It is shown that the strain sensor cannot indicate the damage if the sensor doesn’t locate at the damage. But the deflection sensor provides the information on the damage from the deflected curve by collected data. The results are illustrated in experimental work.


2005 ◽  
Vol 127 (1) ◽  
pp. 153-155 ◽  
Author(s):  
Keith Gawlik ◽  
Craig Christensen ◽  
Charles Kutscher

The performance of low-conductivity unglazed, transpired solar collectors was determined numerically and experimentally. The numerical work consisted of modeling flow conditions, plate geometries, and plate conductivities with modified commercial computational fluid dynamics software, and the experimental work compared the performance of two plate geometries made with high and low conductivity materials under a variety of flow conditions. Good agreement was found between the numerical and experimental results. The results showed that for practical low-conductivity materials, performance differed little from the equivalent plate geometry in high-conductivity material.


Author(s):  
Khaled Elsherbiny ◽  
Tahsin Tezdogan ◽  
Mohamed Kotb ◽  
Atilla Incecik ◽  
Sandy Day

Abstract A new division of the Suez Canal in Egypt, termed the New Suez Canal, was opened for international navigation in August 2015. It is therefore important to ensure the safety of ships navigating this new section of the canal. Measures to avoid grounding and/or drifting to the canal banks are necessary. Additionally, accurate prediction data for ship squat and under keel clearance is crucial. This paper presents the results of experimental work carried out at the Kelvin Hydrodynamic Laboratory at the University of Strathclyde, Glasgow, to study the effect of trim on containership sailing characteristics in shallow waters using Kriso Container Ship (KCS) model. A series of model tests were conducted to measure the resistance, sinkage variations with speed, water depth and loading conditions under different trimming angles at 1:75 scale. The objective of this work is to examine the range of ship trim for safe and efficient sailing in restricted water in both depth and width. The study also aimed to provide data to be used in validating numerical computations to be carried on the same type of vessel to detect the best trim angle for ships during sailing in restricted waters to reduce resistance and therefore fuel consumption. For depth Froude numbers higher than 0.4, the results show that the ship model sinkage is less for aft trim than for level trim or forward trim. Concurrently, it can be observed that there is less water resistance for aft trim than for forward trim, albeit level trim shows the least resistance. The test was conducted for one value of model draft which was 0.144 m. Side bank effect were also examined.


2021 ◽  
Vol 1 ◽  
pp. 237
Author(s):  
Anissa Neal ◽  
Brian Dillon

Experimental work on islands has used formal acceptability judgment studies to quantify the severity of different island violations. This current study uses this approach to probe the (in-)violability of definite islands, an understudied island, in offline and online measures. We conducted two acceptability judgment studies and find a modest island effect. However, rating distributions appear bimodal across definites and indefinites. We also conducted a self-paced reading experiment, but found no sig- nificant effects. Overall, offline, definite islands differ from other uniform islands, but online, the results are more complicated.


Sign in / Sign up

Export Citation Format

Share Document