HOT NUCLEAR MATTER PROPERTIES

2007 ◽  
Vol 16 (09) ◽  
pp. 3041-3044
Author(s):  
TOMAZ PASSAMANI ◽  
MARIA LUIZA CESCATO

The nuclear matter at finite temperature is described in the relativistic mean field theory using linear and nonlinear interactions. The behavior of effective nucleon mass with temperature was numerically calculated. For the nonlinear NL3 interaction we also observed the striking decrease at temperatures well below the nucleon mass. The calculation of NL3 nuclear matter equation of state at finite temperature is still on progress.

2007 ◽  
Vol 16 (02n03) ◽  
pp. 297-302 ◽  
Author(s):  
TOMAZ PASSAMANI ◽  
MARIA LUIZA CESCATO

The nuclear matter density at finite temperature was evaluated analytically in the relativistic mean field theory using Sommerfeld approximation at low temperature. These analytical results are interesting since they allow a more transparent analysis of the contributions of the involved parameters.


1995 ◽  
Vol 10 (37) ◽  
pp. 2809-2818 ◽  
Author(s):  
QI-REN ZHANG ◽  
WALTER GREINER

We generalize the Walecka model for nuclear matter by including the π-field. It is found that a finite mean π-field may lower the energy per nucleon even in the nuclear matter of subnormal density. A mean π-field may significantly change the nuclear equation of state. The importance of considering the π-field in the relativistic mean field theory for nuclear matter is therefore emphasized.


2004 ◽  
Vol 13 (07) ◽  
pp. 1249-1253
Author(s):  
DÉBORA P. MENEZES ◽  
C. PROVIDÊNCIA

We investigate the properties of mixed stars formed by hadronic and quark matter in β-equilibrium described by appropriate equations of state (EOS) in the framework of relativistic mean-field theory. The calculations were performed for T=0 and for finite temperatures and also for fixed entropies with and without neutrino trapping in order to describe neutron and proto-neutron stars. The star properties are discussed. Maximum allowed masses for proto-neutron stars are much larger when neutrino trapping is imposed.


1994 ◽  
Vol 337 (1-2) ◽  
pp. 19-24 ◽  
Author(s):  
Tomoyuki Maruyama ◽  
Hirotsugu Fujii ◽  
Takumi Muto ◽  
Toshitaka Tatsumi

1997 ◽  
Vol 06 (01) ◽  
pp. 151-159 ◽  
Author(s):  
M. Rashdan

The relativistic mean field theory (linear and nonlinear) models are extended to the case of two colliding nuclear matters, relevant to heavy ion scattering and reactions. The effect of vacuum corrections is taken into account through the relativistic Hartree approximation. The Fermi sea is assumed to consist of two colliding Lorentz elongated spheres. A relativistic covariant Pauli correction is considered for the overlap case. This relativistic Pauli correction is found to be very important due to its dependence on the effective nucleon mass which strongly depends on the model equation of state. It is found that by increasing the velocity the energy per baryon increases and saturates at higher densities. The increase in the energy per baryon at low density (the region of no overlap) is much larger than that at high density (the region of large overlap), due to Pauli correction effects. The saturation density of the nonlinear model is shifted to larger values than that of the linear model. Vacuum corrections effects are found to reduce largely te overlap region.


1997 ◽  
Vol 391 (3-4) ◽  
pp. 255-260 ◽  
Author(s):  
Amand Faessler ◽  
A.J. Buchmann ◽  
M.I. Krivoruchenko ◽  
B.V. Martemyanov

Sign in / Sign up

Export Citation Format

Share Document