scholarly journals NON-UNIFORM STRUCTURE OF MATTER AND THE EQUATION OF STATE

2008 ◽  
Vol 17 (09) ◽  
pp. 1774-1789
Author(s):  
TOSHIKI MARUYAMA ◽  
SATOSHI CHIBA ◽  
TOSHITAKA TATSUMI

We investigate the non-uniform structures and the equation of state (EOS) of nuclear matter in the context of the first-order phase transitions (FOPT) such as liquid-gas phase transition, kaon condensation, and hadron-quark phase transition. During FOPT the mixed phases appear, where matter exhibits non-uniform structures called "Pasta" structures due to the balance of the Coulomb repulsion and the surface tension between two phases. We treat these effects self-consistently, properly taking into account of the Poisson equation and the Gibbs conditions. Consequently, they make the EOS of the mixed phase closer to that of Maxwell construction due to the Debye screening. This is a general feature of the mixed phase consisting of many species of charged particles.

2018 ◽  
Vol 98 (8) ◽  
Author(s):  
Cheng-Ming Li ◽  
Yan Yan ◽  
Jin-Jun Geng ◽  
Yong-Feng Huang ◽  
Hong-Shi Zong

2012 ◽  
Vol 76 (1) ◽  
pp. 129-142 ◽  
Author(s):  
A. Yu. Likhacheva ◽  
S. V. Rashchenko ◽  
Yu. V. Seryotkin

AbstractThe elastic and structural behaviour of dehydrated analcime in compression in a non-penetrating medium up to 3 GPa was studied in a diamond anvil cell using in situ synchrotron powder diffraction. A first-order phase transition at 0.4–0.7 GPa is accompanied by a symmetry change from monoclinic (I2/a) to pseudo-rhombohedral (R3) due to trigonalization of the aluminosilicate framework. This is due to the migration of cations to new positions close to the 6-membered rings forming the channels. The reduction of the mean aperture of the structure-forming 6- and 8-membered rings, as a result of tetrahedral tilting, leads to a 7.5% reduction in volume at the phase transition. The bulk modulus values are 38(2) GPa for the low pressure (LP) phase [fitted with a Murnaghan equation of state, K' = 4 (fixed)] and 11(4) GPa for the high pressure (HP) phase [fitted with a third-order Birch–Murnaghan equation of state, K' = 9(1)]. The elastic behaviour of the LP phase is anisotropic, with compressibilities βa:βb:βc in the ratio 1:4:2; the most compressible direction b coinciding with the orientation of empty 8-membered rings. The compressibility of the HP phase is isotropic. Trigonalization appears to be the most effective (and probably unique) mechanism of radical volume contraction for the ANA structure type.


Universe ◽  
2019 ◽  
Vol 5 (6) ◽  
pp. 156 ◽  
Author(s):  
Matthias Hanauske ◽  
Luke Bovard ◽  
Elias Most ◽  
Jens Papenfort ◽  
Jan Steinheimer ◽  
...  

The long-awaited detection of a gravitational wave from the merger of a binary neutron star in August 2017 (GW170817) marks the beginning of the new field of multi-messenger gravitational wave astronomy. By exploiting the extracted tidal deformations of the two neutron stars from the late inspiral phase of GW170817, it is now possible to constrain several global properties of the equation of state of neutron star matter. However, the most interesting part of the high density and temperature regime of the equation of state is solely imprinted in the post-merger gravitational wave emission from the remnant hypermassive/supramassive neutron star. This regime was not observed in GW170817, but will possibly be detected in forthcoming events within the current observing run of the LIGO/VIRGO collaboration. Numerous numerical-relativity simulations of merging neutron star binaries have been performed during the last decades, and the emitted gravitational wave profiles and the interior structure of the generated remnants have been analysed in detail. The consequences of a potential appearance of a hadron-quark phase transition in the interior region of the produced hypermassive neutron star and the evolution of its underlying matter in the phase diagram of quantum cromo dynamics will be in the focus of this article. It will be shown that the different density/temperature regions of the equation of state can be severely constrained by a measurement of the spectral properties of the emitted post-merger gravitational wave signal from a future binary compact star merger event.


1993 ◽  
Vol 137 ◽  
pp. 307-309 ◽  
Author(s):  
D. Saumon ◽  
G. Chabrier

An improved theory of fluid hydrogen at high density, based on a detailed treatment of inter-particle correlations and a self-consistent treatment of pressure ionization, has become available recently (Chabrier 1990, Saumon and Chabrier 1991, 1992). We present a preliminary comparison between this new EOS (hereatfer SC) and equations of state frequently used in astrophysical contexts, namely: Fontaine, Graboske and Van Horn 1977 (FGVH), Däppen et al. 1988 (MHD) and Magni and Mazzitelli 1979 (MM).The SC theory predicts a first-order phase transition in the region of pressure-ionization (the so-called Plasma Phase Transition, or PPT), between an essentially neutral mixture of atoms and molecules (xe– < 10−2), and a partially ionized plasma (xe– ≈ 50 %), with a critical point located at Pc = 0.614 Mbar, Tc = 15300K and pc = 0.35 g/cm3.


2011 ◽  
Vol 21 (04) ◽  
pp. 745-775 ◽  
Author(s):  
P. HELLUY ◽  
H. MATHIS

In this paper we investigate algorithms based on the Fast Legendre Transform (FLT) in order to compute tabulated Equation Of State (EOS) for fluids with phase transition. The equation of state of a binary mixture is given by an energy minimization principle. According to the miscible or immiscible nature of the mixture, the energy of the system is either a convex envelope or an inf-convolution of the energies of the two phases. Because these operations are closely linked to Legendre transform, it is possible to construct fast algorithms that compute efficiently these operations. In addition, it appears that the natural mathematical tool for studying mixture thermodynamics in the Legendre space is the max-plus algebra theory.


1992 ◽  
Vol 03 (05) ◽  
pp. 1109-1117
Author(s):  
THOMAS LIPPERT ◽  
KLAUS SCHILLING ◽  
PEER UEBERHOLZ ◽  
GYAN BHANOT

The presence of strong metastabilities in computer simulations of models showing a first order phase transition hinders a reliable determination of the weight ratio between the two phases. We discuss a new phenomenological method which allows an accurate fixing of the weight ratio using the standard multihistogram procedure.


Sign in / Sign up

Export Citation Format

Share Document