scholarly journals Detecting the Hadron-Quark Phase Transition with Gravitational Waves

Universe ◽  
2019 ◽  
Vol 5 (6) ◽  
pp. 156 ◽  
Author(s):  
Matthias Hanauske ◽  
Luke Bovard ◽  
Elias Most ◽  
Jens Papenfort ◽  
Jan Steinheimer ◽  
...  

The long-awaited detection of a gravitational wave from the merger of a binary neutron star in August 2017 (GW170817) marks the beginning of the new field of multi-messenger gravitational wave astronomy. By exploiting the extracted tidal deformations of the two neutron stars from the late inspiral phase of GW170817, it is now possible to constrain several global properties of the equation of state of neutron star matter. However, the most interesting part of the high density and temperature regime of the equation of state is solely imprinted in the post-merger gravitational wave emission from the remnant hypermassive/supramassive neutron star. This regime was not observed in GW170817, but will possibly be detected in forthcoming events within the current observing run of the LIGO/VIRGO collaboration. Numerous numerical-relativity simulations of merging neutron star binaries have been performed during the last decades, and the emitted gravitational wave profiles and the interior structure of the generated remnants have been analysed in detail. The consequences of a potential appearance of a hadron-quark phase transition in the interior region of the produced hypermassive neutron star and the evolution of its underlying matter in the phase diagram of quantum cromo dynamics will be in the focus of this article. It will be shown that the different density/temperature regions of the equation of state can be severely constrained by a measurement of the spectral properties of the emitted post-merger gravitational wave signal from a future binary compact star merger event.

2021 ◽  
Vol 103 (12) ◽  
Author(s):  
Rossella Gamba ◽  
Matteo Breschi ◽  
Sebastiano Bernuzzi ◽  
Michalis Agathos ◽  
Alessandro Nagar

2020 ◽  
Vol 641 ◽  
pp. A56
Author(s):  
Xiaoxiao Ren ◽  
Daming Wei ◽  
Zhenyu Zhu ◽  
Yan Yan ◽  
Chengming Li

The joint detection of the gravitational wave signal and the electromagnetic emission from a binary neutron star merger can place unprecedented constraint on the equation of state of supranuclear matter. Although a variety of electromagnetic counterparts have been observed for GW170817, including a short gamma-ray burst, kilonova, and the afterglow emission, the nature of the merger remnant is still unclear, however. The X-ray plateau is another important characteristics of short gamma-ray bursts. This plateau is probably due to the energy injection from a rapidly rotating magnetar. We investigate what we can learn from the detection of a gravitational wave along with the X-ray plateau. In principle, we can estimate the mass of the merger remnant if the X-ray plateau is caused by the central magnetar. We selected eight equations of state that all satisfy the constraint given by the gravitational wave observation, and then calculated the mass of the merger remnants of four short gamma-ray bursts with a well-measured X-ray plateau. If, on the other hand, the mass of the merger remnant can be obtained by gravitational wave information, then by comparing the masses derived by these two different methods can further constrain the equation of state. We discuss the possibility that the merger product is a quark star. In addition, we estimate the possible mass range for the recently discovered X-ray transient CDF-S XT2 that probably originated from a binary neutron star merger. Finally, under the assumption that the post-merger remnant of GW170817 was a supramassive neutron star, we estimated the allowed parameter space of the supramassive neutron star and find that in this case, the magnetic dipole radiation energy is so high that it may have some effects on the short gamma-ray burst and kilonova emission. The lack of detection of these effects suggests that the merger product of GW170817 may not be a supermassive neutron star.


Particles ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 44-56 ◽  
Author(s):  
Matthias Hanauske ◽  
Jan Steinheimer ◽  
Anton Motornenko ◽  
Volodymyr Vovchenko ◽  
Luke Bovard ◽  
...  

Gravitational waves, electromagnetic radiation, and the emission of high energy particles probe the phase structure of the equation of state of dense matter produced at the crossroad of the closely related relativistic collisions of heavy ions and of binary neutron stars mergers. 3 + 1 dimensional special- and general relativistic hydrodynamic simulation studies reveal a unique window of opportunity to observe phase transitions in compressed baryon matter by laboratory based experiments and by astrophysical multimessenger observations. The astrophysical consequences of a hadron-quark phase transition in the interior of a compact star will be focused within this article. Especially with a future detection of the post-merger gravitational wave emission emanated from a binary neutron star merger event, it would be possible to explore the phase structure of quantum chromodynamics. The astrophysical observables of a hadron-quark phase transition in a single compact star system and binary hybrid star merger scenario will be summarized within this article. The FAIR facility at GSI Helmholtzzentrum allows one to study the universe in the laboratory, and several astrophysical signatures of the quark-gluon plasma have been found in relativistic collisions of heavy ions and will be explored in future experiments.


2018 ◽  
Vol 171 ◽  
pp. 20004 ◽  
Author(s):  
Matthias Hanauske ◽  
Zekiye Simay Yilmaz ◽  
Christina Mitropoulos ◽  
Luciano Rezzolla ◽  
Horst Stöcker

In this article we will focus on the appearance of the hadron-quark phase transition and the formation of strange matter in the interior region of the hypermassive neutron star and its conjunction with the spectral properties of the emitted gravitational waves (GWs). A strong hadron-quark phase transition might give rise to a mass-radius relation with a twin star shape and we will show in this article that a twin star collapse followed by a twin star oscillation is feasible. If such a twin star collapse would happen during the postmerger phase it will be imprinted in the GW-signal.


2018 ◽  
Vol 480 (3) ◽  
pp. 3871-3878 ◽  
Author(s):  
Michael W Coughlin ◽  
Tim Dietrich ◽  
Zoheyr Doctor ◽  
Daniel Kasen ◽  
Scott Coughlin ◽  
...  

ABSTRACT The detection of the binary neutron star merger GW170817 together with the observation of electromagnetic counterparts across the entire spectrum inaugurated a new era of multimessenger astronomy. In this study, we incorporate wavelength-dependent opacities and emissivities calculated from atomic-structure data enabling us to model both the measured light curves and spectra of the electromagnetic transient AT2017gfo. Best fits of the observational data are obtained by Gaussian Process Regression, which allows us to present posterior samples for the kilonova and source properties connected to GW170817. Incorporating constraints obtained from the gravitational wave signal measured by the LIGO-Virgo Scientific Collaboration, we present a $90{{\ \rm per\ cent}}$ upper bound on the mass ratio q ≲ 1.38 and a lower bound on the tidal deformability of $\tilde{\Lambda } \gtrsim 197$, which rules out sufficiently soft equations of state. Our analysis is a path-finder for more realistic kilonova models and shows how the combination of gravitational wave and electromagnetic measurements allow for stringent constraints on the source parameters and the supranuclear equation of state.


Author(s):  
Luca Baiotti

AbstractI review the current global status of research on gravitational waves emitted from mergers of binary neutron star systems, focusing on general-relativistic simulations and their use to interpret data from the gravitational-wave detectors, especially in relation to the equation of state of compact stars.


2020 ◽  
Vol 229 (22-23) ◽  
pp. 3595-3604
Author(s):  
Andreas Bauswein ◽  
Sebastian Blacker

AbstractWe describe an unambiguous gravitational-wave signature to identify the occurrence of a strong phase transition from hadronic matter to deconfined quark matter in neutron star mergers. Such a phase transition leads to a strong softening of the equation of state and hence to more compact merger remnants compared to purely hadronic models. If a phase transition takes place during merging, this results in a characteristic increase of the dominant postmerger gravitational-wave frequency relative to the tidal deformability characterizing the inspiral phase. By comparing results from different purely hadronic and hybrid models we show that a strong phase transition can be identified from a single, simultaneous measurement of pre- and postmerger gravitational waves. Furthermore, we present new results for hybrid star mergers, which contain quark matter already during the inspiral stage. Also for these systems we find that the postmerger GW frequency is increased compared to purely hadronic models. We thus conclude that also hybrid star mergers with an onset of the hadron-quark phase transition at relatively low densities may lead to the very same characteristic signature of quark deconfinement in the postmerger GW signal as systems undergoing the phase transition during merging.


2020 ◽  
Vol 499 (4) ◽  
pp. 5972-5977
Author(s):  
Francisco Hernandez Vivanco ◽  
Rory Smith ◽  
Eric Thrane ◽  
Paul D Lasky

ABSTRACT Gravitational-wave observations of binary neutron star coalescences constrain the neutron-star equation of state by enabling measurement of the tidal deformation of each neutron star. This deformation is well approximated by the tidal deformability parameter Λ, which was constrained using the first binary neutron star gravitational-wave observation, GW170817. Now, with the measurement of the second binary neutron star, GW190425, we can combine different gravitational-wave measurements to obtain tighter constraints on the neutron-star equation of state. In this paper, we combine data from GW170817 and GW190425 to place constraints on the neutron-star equation of state. To facilitate this calculation, we derive interpolated marginalized likelihoods for each event using a machine learning algorithm. These likelihoods, which we make publicly available, allow for results from multiple gravitational-wave signals to be easily combined. Using these new data products, we find that the radius of a fiducial 1.4 M⊙ neutron star is constrained to $11.6^{+1.6}_{-0.9}$ km at 90 per cent confidence and the pressure at twice the nuclear saturation density is constrained to $3.1^{+3.1}_{-1.3}\times 10^{34}$ dyne cm−2 at 90 per cent confidence. Combining GW170817 and GW190425 produces constraints indistinguishable from GW170817 alone and is consistent with findings from other works.


Sign in / Sign up

Export Citation Format

Share Document