δ MESON EFFECTS ON ASYMMETRIC NUCLEAR MATTER

2008 ◽  
Vol 17 (09) ◽  
pp. 1815-1824 ◽  
Author(s):  
B. LIU ◽  
M. DI TORO ◽  
V. GRECO

The impact of a δ meson field (the scalar-isovector channel) on asymmetric nuclear matter is studied within relativistic mean-field (RMF) models with both constant and density dependent (DD) nucleon-meson couplings. The Equation of State (EOS) for asymmetric nuclear matter and the neutron star properties by the different models are compared. We find that the δ-field in the constant coupling scheme leads to a larger repulsion in dense neutron-rich matter and to a definite splitting of proton and neutron effective masses, finally influencing the stability of the neutron stars. A broader analysis of possible δ-field effects is achieved considering also density dependent nucleon-meson coupling. A remarkable effect on the relation between mass and radius for the neutron stars is seen, showing a significant reduction of the radius along with a moderate mass reduction due to the increase of the effective δ coupling in high density regions.

2004 ◽  
Vol 13 (07) ◽  
pp. 1519-1524 ◽  
Author(s):  
VERÔNICA A. DEXHEIMER ◽  
CÉSAR A. Z. VASCONCELLOS ◽  
MOISÉS RAZEIRA ◽  
MANFRED DILLIG

For the nuclear many body problem at high densities, formulated in the framework of a relativistic mean-field theory, we investigate in detail the compression modulus of nuclear matter as a function of the effective nucleon mass. We include consistently in our modelling chemical equilibrium as well as baryon number and electric charge conservation and investigate properties of neutron stars. Among other predictions we focus on the dependence of the maximum mass of a sequence of neutron stars as a function of the compression modulus and the nucleon effective mass.


2008 ◽  
Vol 17 (09) ◽  
pp. 1720-1728
Author(s):  
L. DANG ◽  
P. YUE ◽  
L. LI ◽  
P. Z. NING

The hyperon density dependence (YDD) of hyperon-nucleon interactions are studied in the relativistic mean field (RMF) model and their influences on the properties of neutron stars are studied. The extended RMF considered the interior quarks coordinates of hyperon and bring a hyperon density dependent factor, f(ρY), to the meson-hyperon coupling vertexes. The hyperon density dependence of YN interaction affect the properties of neutron stars only after the corresponding hyperon appears. Then, the influences of the density dependence factors are almost ignored at low densities, which are clear at high densities. The compositions and properties of neutron stars are studied with and without the YDD of YN interactions for the different Σ--nucleus effective potentials, (30, 0, -30)MeV. The calculated results indicated that the YDD of YN interaction soften the equation of state of neutron stars at high densities.


2011 ◽  
Vol 20 (09) ◽  
pp. 1983-2010 ◽  
Author(s):  
A. SULAKSONO

The effects of auxiliary contribution in forms of electromagnetic tensors and relativistic electromagnetic exchange in local density approximation as well as δ meson and isovector density-dependent nonlinear terms in standard relativistic mean field model constrained by nuclear matter stability criteria in some selected finite nuclei and nuclear matter properties are studied. It is found that in the case of finite nuclei, the electromagnetic tensors play the most dominant part compared to other auxiliary terms. Due to the presence of electromagnetic tensors, the binding energies prediction of the model can be improved quite significantly. However, these terms do not yield demanded effects for rms radii prediction. In the case of nuclear matter properties, the isovector density-dependent nonlinear term plays the most crucial role in providing predictions which are quite compatible with experimental constraints. We have also shown these auxiliary contributions are indeed unable to improve the single particle spectrum results of the model.


2009 ◽  
Vol 24 (11n13) ◽  
pp. 1067-1070
Author(s):  
S. WIBOWO ◽  
A. SULAKSONO

Effects of the ω meson self coupling (OMSC) on the thermal properties of asymmetric nuclear matter (ANM) are studied within the framework of relativistic mean field (RMF) model that includes contributions of all possible mixed interactions among meson fields involved up to quartic order. In particular, we study the mechanical and chemical instabilities (spinodal), as well as the liquid-gas phase transition (binodal) at finite temperature. It is found that the onset of spinodal instabilities and the binodal curve are only marginally affected by variation of the OMSC parameter, whereas the binodal curve shows a strong correlation to the symmetry energy. Comparison with other ERMF parameter sets is also performed.


2000 ◽  
Vol 15 (29) ◽  
pp. 1789-1800 ◽  
Author(s):  
A. R. TAURINES ◽  
C. A. Z. VASCONCELLOS ◽  
M. MALHEIRO ◽  
M. CHIAPPARINI

We investigate static properties of nuclear and neutron star matter by using a relativistic mean field theory with parametrized couplings. With a suitable choice of mathematical parameters, the couplings allow one to reproduce results of current quantum hadrodynamics models. For other parametrizations, a better description of bulk properties of nuclear matter is obtained. The formalism is extended to include hyperon and lepton degrees of freedom, and an analysis on the effects of the phenomenological couplings in the fermion populations and mass of neutron stars is performed. The results show a strong similarity between the predictions of ZM-like models and those with exponential couplings. We have observed in particular an extreme sensibility of the predictions of these theories on the specific choice of the values of the binding energy of nuclear matter and saturation density. Additionally, the role of the very intense scalar meson mean field found in the interior of neutron stars in the screening of the nucleon mass is discussed.


Sign in / Sign up

Export Citation Format

Share Document