PARTICLE-NUMBER PROJECTED TWO-PROTON SEPARATION ENERGY OF THE PROTON-RICH EVEN–EVEN RARE-EARTH NUCLEI USING AN ISOVECTOR PAIRING APPROACH

2009 ◽  
Vol 18 (01) ◽  
pp. 141-160 ◽  
Author(s):  
S. KERROUCHI ◽  
D. MOKHTARI ◽  
N. H. ALLAL ◽  
M. FELLAH

The two-proton separation energy (S2P) has been studied by describing the pairing correlations using four various approaches: in the pairing between like-particles case with (SBCS) and without (BCS) inclusion of the particle-number projection, as well as in the isovector pairing case with (NP-PROJ) and without (NP) inclusion of the particle-number projection. It has been numerically evaluated for the even–even rare-earth proton-rich nuclei such as Δnp ≠ 0. Among the four used methods, NP-PROJ is the one that provides the results that are closest to the experimental data when available. On the other hand, it has been shown that the S2P values deduced from the four approaches join, for almost all the considered elements, for the highest values of (N - Z). The fact that the BCS and NP (respectively, SBCS and NP-PROJ) values join may be explained by the fact that Δnp decreases with increasing values of (N - Z). It has also been shown that the BCS and SBCS (respectively, NP and NP-PROJ) values of S2P are very close because the discrepancy between the projected and unprojected energy values is quasi-constant as a function of the deformation. Finally, the four used methods lead to the same prediction of the two-proton drip-line position except for the Dysprosium and the Tungsten.

2012 ◽  
Vol 21 (12) ◽  
pp. 1250100 ◽  
Author(s):  
F. HAMMACHE ◽  
N. H. ALLAL ◽  
M. FELLAH

The one-proton and two-proton separation energies are studied for "ordinary" and rare-earth proton-rich nuclei by including the isovector neutron–proton (np) pairing correlations using the BCS approximation. Even–even as well as odd nuclei are considered. In the latter case, the wave function is defined using the blocked-level technique. The single-particle energies used are those of a deformed Woods–Saxon mean field. It is shown that the np isovector pairing effects on the one-proton and two-proton separation energies are non-negligible. However, the only isovector BCS approximation seems to be inadequate for a good description of these quantities when including the np pairing effects: either a particle-number projection or the inclusion of the isoscalar pairing effect seems to be necessary. Another possible improvement would be a more realistic choice of the pairing strengths.


1975 ◽  
Vol 53 (10) ◽  
pp. 948-953 ◽  
Author(s):  
D. G. Burke ◽  
J. M. Balogh

Reaction Q values for the (3He,d) and (α,t) single proton transfer reactions on targets of Gd, Dy, Er, and Yb have been measured with a magnetic spectrograph. Proton separation energies, Sp, are presented for 156,157,158,159,161Tb, 161,162,163,164,165Ho, 165,167,168,169,171Tm, and 171,172,173,174,175,177Lu. Although the uncertainties of the absolute Q values are approximately 15 keV, the use of isotopically mixed and natural targets resulted in probable errors of only 1–3 keV for the differences in Q values of the isotopes identified in each target. As the proton separation energy was previously known to within 1–3 keV for one isotope of each element studied, it is now possible to present SP values with errors of a few keV for ail the nuclides listed above.


2008 ◽  
Vol 17 (07) ◽  
pp. 1357-1365 ◽  
Author(s):  
N. BENHAMOUDA ◽  
N. H. ALLAL ◽  
M. FELLAH ◽  
M. R. OUDIH

The variation of the two-neutron separation energy (S2N), as a function of the neutron number N, is studied using a microscopic model that includes the pairing effects rigorously within the Fixed-Sharp-BCS method. The model was first tested on "ordinary" nuclei and allowed one to suitably reproduce the experimental data and to confirm the results of previous studies. The model was then applied to the even–even neutron-rich isotopes in the rare-earth region and showed, on the one hand, a relatively important variation of S2N, when N = 100, that could lead to the assumption of the existence of a new magic number in this region, and on the other hand, a weak variation of S2N when N > 100. These findings corroborate the previously obtained results for the charge mean square radius and the quadrupole and hexadecapole moments within the same model.


1979 ◽  
Vol 40 (C5) ◽  
pp. C5-56-C5-57 ◽  
Author(s):  
E. Belorizky ◽  
Y. Berthier ◽  
R. A.B. Devine ◽  
P. M. Levy ◽  
J. J. Niez

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Dong Huang ◽  
Yan-Qing Liu ◽  
Li-Shuang Liang ◽  
Xue-Wu Lin ◽  
Tao Song ◽  
...  

At present, there are many constantly updated guidelines and consensuses on the diagnosis and treatment of osteoarthritis both at home and abroad. The recommendations established using methods of evidence-based medicine has experienced strict research on controlling bias and promoting reproduction rate. As a result, the previous evidence was reevaluated, and a lot of changes were provoked in the diagnosis and treatment concept of osteoarthritis. However, several methods not recommended by foreign guidelines are still in use in the current clinical practice in China. On the one hand, Chinese experts have not reached extensive consensus on whether it is necessary to make changes according to foreign guidelines. On the other hand, almost all the current relevant guidelines are on osteoarthritis, but the lesions around knee joints which, as a whole, bear the largest weight in human body, cannot be ignored. For this purpose, Chinese Association for the Study of Pain (CASP) organized some leading experts to formulate this Chinese Pain Specialist Consensus on the diagnosis and treatment of degenerative knee osteoarthritis (DKOA) in combination with the guidelines in foreign countries and the expert experience of clinical practice in China. The consensus, which includes the definition, pathophysiology, epidemiology, clinical manifestation, diagnostic criteria, and treatments of DKOA, is intended to be used by first-line doctors, including pain physicians to manage patients with DKOA.


Sign in / Sign up

Export Citation Format

Share Document