scholarly journals MULTI-MESSENGER OBSERVATIONS OF NEUTRON-RICH MATTER

2011 ◽  
Vol 20 (10) ◽  
pp. 2077-2100 ◽  
Author(s):  
C. J. HOROWITZ

At very high densities, electrons react with protons to form neutron-rich matter. This material is central to many fundamental questions in nuclear physics and astrophysics. Moreover, neutron-rich matter is being studied with an extraordinary variety of new tools such as Facility for Rare Isotope Beams (FRIB) and the Laser Interferometer Gravitational Wave Observatory (LIGO). We describe the Lead Radius Experiment (PREX) that uses parity violating electron scattering to measure the neutron radius in 208Pb. This has important implications for neutron stars and their crusts. We discuss X-ray observations of neutron star radii. These also have important implications for neutron-rich matter. Gravitational waves (GW) open a new window on neutron-rich matter. They come from sources such as neutron star mergers, rotating neutron star mountains, and collective r-mode oscillations. Using large scale molecular dynamics simulations, we find neutron star crust to be very strong. It can support mountains on rotating neutron stars large enough to generate detectable gravitational waves. Finally, neutrinos from core collapse supernovae (SN) provide another, qualitatively different probe of neutron-rich matter. Neutrinos escape from the surface of last scattering known as the neutrino-sphere. This is a low density warm gas of neutron-rich matter. Neutrino-sphere conditions can be simulated in the laboratory with heavy ion collisions. Observations of neutrinos can probe nucleosyntheses in SN. Simulations of SN depend on the equation of state (EOS) of neutron-rich matter. We discuss a new EOS based on virial and relativistic mean field calculations. We believe that combing astronomical observations using photons, GW, and neutrinos, with laboratory experiments on nuclei, heavy ion collisions, and radioactive beams will fundamentally advance our knowledge of compact objects in the heavens, the dense phases of QCD, the origin of the elements, and of neutron-rich matter.

Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 171
Author(s):  
Peter Senger

The poorly known properties of high-density strongly-interacting matter govern the structure of neutron stars and the dynamics of neutron star mergers. New insight has been and will be gained by astronomical observations, such as the measurement of mass and radius of neutron stars, and the detection of gravitational waves emitted from neutron star mergers. Alternatively, information on the Nuclear Matter Equation-of-State (EOS) and on a possible phase transition from hadronic to quark matter at high baryon densities can be obtained from laboratory experiments investigating heavy-ion collisions. Detector systems dedicated to such experiments are under construction at the “Facility for Antiproton and Ion Research” (FAIR) in Darmstadt, Germany, and at the “Nuclotron-based Ion Collider fAcility” (NICA) in Dubna, Russia. In heavy-ion collisions at these accelerator centers, one expects the creation of baryon densities of up to 10 times saturation density, where quark degrees-of-freedom should emerge. This article reviews the most promising observables in heavy-ion collisions, which are used to probe the high-density EOS and possible phase transition from hadronic to quark matter. Finally, the facilities and the experimental setups will be briefly described.


2020 ◽  
Vol 15 ◽  
pp. 196
Author(s):  
T. Gaitanos ◽  
G. Ferini ◽  
M. Colonna ◽  
M. Di Toro ◽  
G. A. Lalazissis ◽  
...  

We present several possibilities offered by nuclear structure, the dynamics of intermediate energy heavy ion collisions and neutron stars to investigate the nuclear matter equation of state (EoS) beyond the ground state. In particular the high density nuclear EoS of asymmetric matter, i.e. the symmetry energy, is discussed.


2001 ◽  
Vol 63 (2) ◽  
Author(s):  
Yuri V. Kovchegov ◽  
Eugene Levin ◽  
Larry McLerran

1989 ◽  
Vol 04 (15) ◽  
pp. 3717-3757 ◽  
Author(s):  
W. M. GEIST

Basic theoretical ideas on a phase transition in heavy ion collisions to a thermalized plasma of free quarks and gluons are outlined. Major experiments are then described which made use of oxygen and sulphur beams with moderate (BNL) or high (CERN) momenta. Representative results pertaining to both average event features and quark-gluon plasma properties are discussed in some detail. This review addresses also interested non-specialists.


Sign in / Sign up

Export Citation Format

Share Document