Comparative study of the energy dependent and independent two-nucleon interactions — A supersymmetric approach

2014 ◽  
Vol 23 (08) ◽  
pp. 1450039 ◽  
Author(s):  
U. Laha ◽  
J. Bhoi

By exploiting supersymmetry inspired factorization method nucleon–nucleon (n–n) potentials, both energy dependent and independent, in the partial waves 1P1 and 3P1 are generated by judicious use of appropriate ground state wave functions and interactions. The energy independent Hulthen and energy dependent equivalent local Yamaguchi potentials and their corresponding S-wave functions are used as the starting point of our calculation. The scattering phase shifts are computed for the constructed potentials through Phase Function Method (PFM) and compared with the standard results to examine the merit of our approach to the problem.

2015 ◽  
Vol 5 (02) ◽  
pp. 73
Author(s):  
Jhasaketan Bhoi ◽  
Ujjwal Laha

<p>By judicious exploitation of supersymmetry formalism of quantum mechanics higher partial wave nucleon-nucleon potentials are generated from its ground state interactions. The nuclear Hulthen potential and the corresponding ground state wave function with the parameters of Arnold and MacKellar are used as the starting point of our calculation. We compute the scattering phase shifts for our constructed potentials through Phase Function Method to examine the merit of our approach to the problem.</p>


2010 ◽  
Vol 25 (25) ◽  
pp. 2155-2165 ◽  
Author(s):  
HONGXIA HUANG ◽  
JIALUN PING ◽  
HOURONG PANG ◽  
FAN WANG

To look for nonstrange dibaryon resonances, a systematic calculation of nucleon–nucleon scattering phase shifts of two interacting baryon clusters of quarks with explicit coupling to NΔ and ΔΔ states is done. Two phenomenological nonrelativistic quark models giving similar low-energy NN properties are found to give significantly different dibaryon resonance structures. In the chiral quark model, the dibaryon system does not resonate in the NNS waves. In the quark delocalization color screening model, the S wave NN resonances appear with nucleon size b = 0.6. There is a IJ = 12NΔ resonance state in the [Formula: see text] scattering phase shifts at 2168 MeV in this model. Both quark models give an IJ = 03 ΔΔ resonance, which is a promising candidate for the explanation of the ABC structure at ~ 2.36 GeV in the production cross section of the reaction pn → dππ by the CELSIUS-WASA collaboration. None of the quark models used has any bound NΔP states that might generate odd-parity resonances.


1978 ◽  
Vol 56 (10) ◽  
pp. 1358-1364 ◽  
Author(s):  
J. W. Darewych ◽  
R. Pooran

We derive bounds to the absolute value of the error that is made in variational estimates of scattering phase shifts. These bounds, like the variational estimates, are second order in 'small' quantities and are, in this respect, an improvement on similar but first-order error bounds derived previously by Bardsley, Gerjuoy, and Sukumar. The s-wave scattering by a square well potential, in the Born approximation, and by an exponential potential, using a many parameter trial function, are used to illustrate the results.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Bentol Hoda Yazarloo ◽  
Liangliang Lu ◽  
Guanghui Liu ◽  
Saber Zarrinkamar ◽  
Hassan Hassanabadi

The approximately analytical scattering state solution of the Schrodinger equation is obtained for the Deng-Fan potential by using an approximation scheme to the centrifugal term. Energy eigenvalues, normalized wave functions, and scattering phase shifts are calculated. We consider and verify two special cases: thel=0and thes-wave Hulthén potential.


Author(s):  
STEVEN GENSEMER ◽  
RUSSELL HART ◽  
ROSS MARTIN ◽  
XINYE XU ◽  
RONALD LEGERE ◽  
...  

1986 ◽  
Vol 39 (4) ◽  
pp. 461 ◽  
Author(s):  
L Berge ◽  
L Petris

A phenomenological NN interaction has been developed in momentum space to fit the elastic scattering phase shifts, the deuteron properties and to saturate nuclear matter. The special features of this interaction are gaussian momentum dependent form factors and the use of only three mesons to characterise the phase shifts.


1998 ◽  
Vol 07 (04) ◽  
pp. 465-483 ◽  
Author(s):  
S. M. Kravchenko ◽  
V. I. Kuprikov ◽  
A. P. Soznik

An expression for the optical potential is obtained in the nuclear matter approximation while taking into account the rearrangement potential for the generalized two-particle density-dependent Skyrme forces. The rearrangement potential influence on the nucleon-nucleus scattering is investigated. It is shown that two- and three-particle Skyrme forces are not equivalent in calculating the imaginary part of the optical potential. The intensity of the optical potential (both its real and imaginary parts) appears to be decreased considerably when the rearrangement potential is taken into account. As a result the dependence of scattering phase shifts on the incident nucleons energy is changed markedly.


Author(s):  
STEVEN GENSEMER ◽  
RUSSELL HART ◽  
ROSS MARTIN ◽  
XINYE XU ◽  
RONALD LEGERE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document