scholarly journals The baryon mass calculation in the chiral soliton model at finite temperature and density

2015 ◽  
Vol 24 (04) ◽  
pp. 1550025 ◽  
Author(s):  
Hui Zhang ◽  
Renda Dong ◽  
Song Shu

In the mean-field approximation, we have studied the soliton which is embedded in a thermal medium within the chiral soliton model. The energy of the soliton or the baryon mass in the thermal medium has been carefully evaluated, in which we emphasize that the thermal effective potential in the soliton energy should be properly treated in order to derive a finite and well-defined baryon mass out of the thermal background. The result of the baryon mass at finite temperatures and densities in chiral soliton model are clearly presented.

Universe ◽  
2018 ◽  
Vol 4 (12) ◽  
pp. 142
Author(s):  
Herbert Weigel

We cautiously review the treatment of pentaquark exotic baryons in chiral soliton models. We consider two examples and argue that any consistent and self-contained description must go beyond the mean field approximation that only considers the classical soliton and the canonical quantization of its (would-be) zero modes via collective coordinates.


1973 ◽  
Vol 26 (5) ◽  
pp. 617 ◽  
Author(s):  
R Van der Borght ◽  
JO Murphy

The combined effect of an imposed rotation and magnetic field on convective transfer in a horizontal Boussinesq layer of fluid heated from below is studied in the mean field approximation. The basic equations are derived by a variational technique and their solutions are then found over a wide range of conditions, in the case of free boundaries, by numerical and analytic techniques, in particular by asymptotic and perturbation methods. The results obtained by the different techniques are shown to be in excellent agreement. As for the linear theory, the calculations predict that the simultaneous presence' of a magnetic field and rotation may produce conflicting tendencies.


2018 ◽  
Vol 172 ◽  
pp. 02003
Author(s):  
Alejandro Ayala ◽  
J. A. Flores ◽  
L. A. Hernández ◽  
S. Hernández-Ortiz

We use the linear sigma model coupled to quarks to compute the effective potential beyond the mean field approximation, including the contribution of the ring diagrams at finite temperature and baryon density. We determine the model couplings and use them to study the phase diagram in the baryon chemical potential-temperature plane and to locate the Critical End Point.


2006 ◽  
Vol 21 (04) ◽  
pp. 910-913 ◽  
Author(s):  
Mei Huang

Magnetic instability in gapless superconductors still remains as a puzzle. In this article, we point out that the instability might be caused by using BCS theory in mean-field approximation, where the phase fluctuation has been neglected. The mean-field BCS theory describes very well the strongly coherent or rigid superconducting state. With the increase of mismatch between the Fermi surfaces of pairing fermions, the phase fluctuation plays more and more important role, and "soften" the superconductor. The strong phase fluctuation will eventually quantum disorder the superconducting state, and turn the system into a phase-decoherent pseudogap state.


2006 ◽  
Vol 21 (31n33) ◽  
pp. 2513-2546 ◽  
Author(s):  
G. Röpke ◽  
P. Schuck

Quantum condensates in nuclear matter are treated beyond the mean-field approximation, with the inclusion of cluster formation. The occurrence of a separate binding pole in the four-particle propagator in nuclear matter is investigated with respect to the formation of a condensate of α-like particles (quartetting), which is dependent on temperature and density. Due to Pauli blocking, the formation of an α-like condensate is limited to the low-density region. Consequences for finite nuclei are considered. In particular, excitations of self-conjugate 2n-Z–2n-N nuclei near the n-α-breakup threshold are candidates for quartetting. We review some results and discuss their consequences. Exploratory calculations are performed for the density dependence of the α condensate fraction at zero temperature to address the suppression of the four-particle condensate below nuclear-matter density.


Sign in / Sign up

Export Citation Format

Share Document