Spinodal instabilities in baryon-rich quark matter

2017 ◽  
Vol 26 (01n02) ◽  
pp. 1740012
Author(s):  
Che Ming Ko ◽  
Feng Li

For quark matter at finite baryon chemical potential, its density develops large fluctuations when it undergoes a first-order phase transition. Based on the Nambu–Jona–Lasinio (NJL) model, we have used the linear response theory to study the growth rate of density fluctuations and its dependence on the wavelength of unstable modes. Using the transport equation derived from the NJL model, we have also studied the time evolution of the unstable modes and the density fluctuations in a baryon-rich quark matter that is confined in a finite volume. Allowing the expansion of the quark matter, we have further studied the survivability of the density fluctuations as the density and temperature of the quark matter decrease. Possible experimental signatures of the density fluctuations have been suggested.

2017 ◽  
Vol 32 (26) ◽  
pp. 1750162 ◽  
Author(s):  
F. Márquez ◽  
R. Zamora

In this paper, we explore the critical end point in the [Formula: see text] phase diagram of a thermomagnetic nonlocal Nambu–Jona-Lasinio model in the weak field limit. We work with the Gaussian regulator, and find that a crossover takes place at [Formula: see text], [Formula: see text]. The crossover turns to a first-order phase transition as the chemical potential or the magnetic field increases. The critical end point of the phase diagram occurs at a higher temperature and lower chemical potential as the magnetic field increases. This result is in accordance to similar findings in other effective models. We also find that there is a critical magnetic field, for which a first-order phase transition takes place even at [Formula: see text].


2010 ◽  
Vol 25 (25) ◽  
pp. 4757-4774 ◽  
Author(s):  
MASAKO HAYASHI ◽  
TOMOHIRO INAGAKI ◽  
WATARU SAKAMOTO

The phase structure of a four- and eight-fermion interaction model is investigated at finite temperature and chemical potential in arbitrary space–time dimensions, 2 ≤ D < 4. The effective potential and the gap equation are calculated in the leading order of the 1/N expansion. If the first order phase transition takes place, the phase boundary dividing the symmetric and the broken phase is modified by the eight-fermion interaction.


2021 ◽  
Vol 8 ◽  
Author(s):  
Aldo Sayeg Pasos-Trejo ◽  
Atahualpa S. Kraemer

We introduce a lattice gas model with a modified Hamiltonian considering different energy for cycles of connected atoms. The system can be interpreted as a chalcogenide glass with pollutants forming floppy and rigid structures. We consider an energetic penalization for redundant bonds in the network. This penalization allows us to incorporate the topology constraints of rigidity in the network to study the thermodynamics of the system. We observe, depending on the parameter used for the penalization, that the system exhibits a typical first-order phase transition, or a stepped transition between the low and high density while varying the chemical potential. We also observe a hysteresis loop in the density and energy of the system. We use the area of these loops to calculate the irreversible enthalpy. There are two regimes, one where the enthalpy decreases linearly and the other with almost constant enthalpy. As the enthalpy is almost constant and very low, we interpreted this as the intermediate phase of the chalcogenide glasses.


Proceedings ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 40
Author(s):  
Israel Portillo

It has been shown that holographic black holes, constructed to mimic the equation of state of QCD computed on the lattice at finite temperature and zero density, display critical behavior at large baryonic chemical potential. In this proceedings, we discuss the mapping of holographic black holes into the QCD phase diagram and the emergence of the critical point and the first order phase transition line.


Author(s):  
Richard J. Spontak ◽  
Steven D. Smith ◽  
Arman Ashraf

Block copolymers are composed of sequences of dissimilar chemical moieties covalently bonded together. If the block lengths of each component are sufficiently long and the blocks are thermodynamically incompatible, these materials are capable of undergoing microphase separation, a weak first-order phase transition which results in the formation of an ordered microstructural network. Most efforts designed to elucidate the phase and configurational behavior in these copolymers have focused on the simple AB and ABA designs. Few studies have thus far targeted the perfectly-alternating multiblock (AB)n architecture. In this work, two series of neat (AB)n copolymers have been synthesized from styrene and isoprene monomers at a composition of 50 wt% polystyrene (PS). In Set I, the total molecular weight is held constant while the number of AB block pairs (n) is increased from one to four (which results in shorter blocks). Set II consists of materials in which the block lengths are held constant and n is varied again from one to four (which results in longer chains). Transmission electron microscopy (TEM) has been employed here to investigate the morphologies and phase behavior of these materials and their blends.


Sign in / Sign up

Export Citation Format

Share Document