Investigation of isospin excited and mixed-symmetry states in even–even N = Z nuclei

2018 ◽  
Vol 27 (08) ◽  
pp. 1850065 ◽  
Author(s):  
Falih H. Al-Khudair

Mixed-symmetry and isospin excited states are typical of the interacting boson model with isospin (IBM-3). With a view to look for such states, levels scheme of the IBM-3 dynamical symmetry is discussed. A systematic investigation in the proton and neutron degrees of freedom of the energy levels has been carried out. A sequence of isospin excitation bands has been identified. We have analyzed the wave functions and given the symmetrical labeling of the states. The transition probabilities between the isospin excitation states of model limits are analyzed in terms of isoscalar and isovector decompositions. The present calculations suggest that a combination of isospin excitation and mixed-symmetry states can provide substantial information on the structure of nuclear states. Calculations for [Formula: see text] and [Formula: see text] nuclei are presented and compared with the results of the shell model and available experimental data.

2020 ◽  
pp. 149-152

The energy states for the J , b , ɤ bands and electromagnetic transitions B (E2) values for even – even molybdenum 90 – 94 Mo nuclei are calculated in the present work of "the interacting boson model (IBM-1)" . The parameters of the equation of IBM-1 Hamiltonian are determined which yield the best excellent suit the experimental energy states . The positive parity of energy states are obtained by using IBS1. for program for even 90 – 94 Mo isotopes with bosons number 5 , 4 and 5 respectively. The" reduced transition probability B(E2)" of these neuclei are calculated and compared with the experimental data . The ratio of the excitation energies of the 41+ to 21+ states ( R4/2) are also calculated . The calculated and experimental (R4/2) values showed that the 90 – 94 Mo nuclei have the vibrational dynamical symmetry U(5). Good agreement was found from comparison between the calculated energy states and electric quadruple probabilities B(E2) transition of the 90–94Mo isotopes with the experimental data .


1987 ◽  
Vol 120 ◽  
pp. 103-105
Author(s):  
J. Le Bourlot ◽  
E. Roueff

We present a new calculation of intercombination transition probabilities between levels X1Σg+ and a 3Πu of the C2 molecule. Starting from experimental energy levels, we calculate RKR potential curves using Leroy's Near Dissociation Expansion (NDE) method; these curves give us wave functions for all levels of interest. We then compute the energy matrix for the four lowest states of C2, taking into account Spin-Orbit coupling between a 3Πu and A 1Πu on the one hand and X 1Σ+g and b 3Σg− on the other. First order wave functions are then derived by diagonalization. Einstein emission transition probabilities of the Intercombination lines are finally obtained.


2021 ◽  
Vol 66 (12) ◽  
pp. 1013
Author(s):  
S.N. Abood ◽  
A.A. Al-Rawi ◽  
L.A. Najam ◽  
F.M. Al-Jomaily

Mixed-symmetry states of 92Zr and 94Mo isotopes are investigated with the use of the collective models, Interacting Boson Model-2 (IBM-2) and Quasiparticle Phonon Model (QPM). The energy spectra and electromagnetic transition rates for these isotopes are calculated. The results of IBM-2 and QPM are compared with available experimental data. We have obtained a satisfactory agreement, and IBM-2 gives a better description. In these isotopes, we observe a few states having a mixed symmetry such as 2+2, 2+3, 3+1, and 1+s. It is found that these isotopes have a vibrational shape corresponding to the U(5) symmetry.


Open Physics ◽  
2013 ◽  
Vol 11 (4) ◽  
Author(s):  
Naser Fouladi ◽  
Mohammadali Jafarizadeh ◽  
Javad Fouladi ◽  
Hadi Sabri

AbstractWe considered the characteristic features of SU(3) partial dynamical symmetry in the interacting boson model framework to show the relevance of such intermediate symmetry structure in the nuclear spectroscopy of the 160Dy nucleus. The predictions of SU(3)-PDS for the energy spectrum and the transition probabilities were compared with the most recent experimental data and an acceptable degree of agreement was achieved.


Open Physics ◽  
2008 ◽  
Vol 6 (3) ◽  
Author(s):  
Mahmut Böyükata ◽  
İhsan Uluer

AbstractThe even-even Selenium isotopes in the A∼80 mass region and the general features of its structure have been investigated within the framework of the interacting boson model-2. The neutron proton version of the model has been applied to the Se (A=74 to 80) isotopes with emphasis on the description of the 01+, 21+, 02+, 22+ and 41+ states. The energy levels, B(E2)and B(M1)electromagnetic transition probabilities were calculated. The results of these calculations were compared with previous experimental results and were shown to be in good agreement.


1993 ◽  
Vol 48 (6) ◽  
pp. 2657-2664 ◽  
Author(s):  
A. Giannatiempo ◽  
G. Maino ◽  
A. Nannini ◽  
P. Sona

Sign in / Sign up

Export Citation Format

Share Document