scholarly journals Description of 160Dy nucleus by partial dynamical SU(3) symmetry

Open Physics ◽  
2013 ◽  
Vol 11 (4) ◽  
Author(s):  
Naser Fouladi ◽  
Mohammadali Jafarizadeh ◽  
Javad Fouladi ◽  
Hadi Sabri

AbstractWe considered the characteristic features of SU(3) partial dynamical symmetry in the interacting boson model framework to show the relevance of such intermediate symmetry structure in the nuclear spectroscopy of the 160Dy nucleus. The predictions of SU(3)-PDS for the energy spectrum and the transition probabilities were compared with the most recent experimental data and an acceptable degree of agreement was achieved.

2020 ◽  
pp. 149-152

The energy states for the J , b , ɤ bands and electromagnetic transitions B (E2) values for even – even molybdenum 90 – 94 Mo nuclei are calculated in the present work of "the interacting boson model (IBM-1)" . The parameters of the equation of IBM-1 Hamiltonian are determined which yield the best excellent suit the experimental energy states . The positive parity of energy states are obtained by using IBS1. for program for even 90 – 94 Mo isotopes with bosons number 5 , 4 and 5 respectively. The" reduced transition probability B(E2)" of these neuclei are calculated and compared with the experimental data . The ratio of the excitation energies of the 41+ to 21+ states ( R4/2) are also calculated . The calculated and experimental (R4/2) values showed that the 90 – 94 Mo nuclei have the vibrational dynamical symmetry U(5). Good agreement was found from comparison between the calculated energy states and electric quadruple probabilities B(E2) transition of the 90–94Mo isotopes with the experimental data .


2014 ◽  
Vol 23 (10) ◽  
pp. 1450056 ◽  
Author(s):  
H. Sabri

In this paper, by using the SO(6) representation of eigenstates and transitional Interacting Boson Model (IBM) Hamiltonian, the evolution from prolate to oblate shapes along the chain of Hg isotopes is studied. Parameter-free (up to overall scale factors) predictions for spectra and B(E2) transition rates are found to be in good agreement with experimental data for 200–204 Hg isotopes which are supported to be located in this transitional region.


2018 ◽  
Vol 27 (03) ◽  
pp. 1850027 ◽  
Author(s):  
Xiao-Wei Li ◽  
Hong-Bo Bai ◽  
Yin Wang ◽  
Jin-Fu Zhang ◽  
Hong-Fei Dong

Band structure and electromagnetic transition properties of the low-lying states in the [Formula: see text]Ne nucleus were studied within the framework of interacting boson model (IBM) 3. The isospin excitation states, low-lying symmetry states, the main components of the eigen-state, isoscalar and isovector parts in the [Formula: see text] and [Formula: see text] transitions for low-lying states have been investigated. According to this study, the calculated results are in agreement with experimental data, and the nucleus [Formula: see text]Ne is in transition from [Formula: see text] to [Formula: see text].


2021 ◽  
Vol 66 (12) ◽  
pp. 1013
Author(s):  
S.N. Abood ◽  
A.A. Al-Rawi ◽  
L.A. Najam ◽  
F.M. Al-Jomaily

Mixed-symmetry states of 92Zr and 94Mo isotopes are investigated with the use of the collective models, Interacting Boson Model-2 (IBM-2) and Quasiparticle Phonon Model (QPM). The energy spectra and electromagnetic transition rates for these isotopes are calculated. The results of IBM-2 and QPM are compared with available experimental data. We have obtained a satisfactory agreement, and IBM-2 gives a better description. In these isotopes, we observe a few states having a mixed symmetry such as 2+2, 2+3, 3+1, and 1+s. It is found that these isotopes have a vibrational shape corresponding to the U(5) symmetry.


Author(s):  
Chengfu Mu ◽  
Dali Zhang

Abstract We have investigated the low-lying energy spectrum and electromagnetic transition strengths in even-even $^{76}$Se using the proton-neutron interacting boson model (IBM-2). The theoretical calculation for the energy levels and $E2$ and $M1$ transition strengths is in good agreement with the experimental data. Especially, the excitation energy and $E2$ transition of $0^+_2$ state, which is intimately associated with shape coexistence, can be well reproduced. The analysis on low-lying states and some key structure indicators indicates that there is a coexistence between spherical shape and $\gamma$-soft shape in $^{76}$Se.


Open Physics ◽  
2008 ◽  
Vol 6 (3) ◽  
Author(s):  
Mahmut Böyükata ◽  
İhsan Uluer

AbstractThe even-even Selenium isotopes in the A∼80 mass region and the general features of its structure have been investigated within the framework of the interacting boson model-2. The neutron proton version of the model has been applied to the Se (A=74 to 80) isotopes with emphasis on the description of the 01+, 21+, 02+, 22+ and 41+ states. The energy levels, B(E2)and B(M1)electromagnetic transition probabilities were calculated. The results of these calculations were compared with previous experimental results and were shown to be in good agreement.


Sign in / Sign up

Export Citation Format

Share Document