Energy levels and transition probabilities of bound excited states of Be-like N IV

1990 ◽  
Vol 44 (4) ◽  
pp. 413-420 ◽  
Author(s):  
T.N. Chang ◽  
Yi Mu
2018 ◽  
Vol 27 (08) ◽  
pp. 1850065 ◽  
Author(s):  
Falih H. Al-Khudair

Mixed-symmetry and isospin excited states are typical of the interacting boson model with isospin (IBM-3). With a view to look for such states, levels scheme of the IBM-3 dynamical symmetry is discussed. A systematic investigation in the proton and neutron degrees of freedom of the energy levels has been carried out. A sequence of isospin excitation bands has been identified. We have analyzed the wave functions and given the symmetrical labeling of the states. The transition probabilities between the isospin excitation states of model limits are analyzed in terms of isoscalar and isovector decompositions. The present calculations suggest that a combination of isospin excitation and mixed-symmetry states can provide substantial information on the structure of nuclear states. Calculations for [Formula: see text] and [Formula: see text] nuclei are presented and compared with the results of the shell model and available experimental data.


2015 ◽  
Vol 723 ◽  
pp. 799-803
Author(s):  
Min Xu

Wavelengths, transition probabilities and oscillator strengths have been calculated for electric dipole (E1) transitions and magnetic dipole (M1) transitions in Cu-like Au ion. These values are obtained in the configuration interaction (CI) and using the fully relativistic multiconfiguration Dirac-Fock (MCDF) method including quantum electrodynamical (QED) effect and Breit correction. Obtained energy levels of some excited states in Cu-like Au ion from the method are generally in good agreement with valuable theoretical and experimental results. The calculation results indicate that for high-Z highly ionized atom, some forbidden transitions are very important.


Author(s):  
Anwer A. Al-Sammarraie , Et. al.

Nuclear excited states with T > 0 in sd even-even N=Z  nuclei have been studied by using shell model. The calculations have employed the USDB Hamiltonian in order to predict the energy levels, the reduced electric quadrupole transition probabilities and reduced magnetic dipole transition probabilities. The study also include the average number of nucleons in each sd- active orbitals. The results compared with available experimental data.  The comparison showed a good agreement between theoretical and experimental energy sates for most of the states studied in this work. On the other hand there was a difference between theoretical and experimental values of transition probabilities, but it can be said that it remained within the acceptable range of the difference.


1999 ◽  
Vol 08 (01) ◽  
pp. 17-38 ◽  
Author(s):  
D. BUCURESCU ◽  
I. CĂTA-DANIL ◽  
M. IVAŞCU ◽  
N. MĂRGINEAN ◽  
L. STROE ◽  
...  

The lifetimes of twelve low spin excited states in 73 As , below 2 MeV excitation, have been measured with the DSA method in the 73 Ge ( p , n γ) reaction. The existing data (energy levels, electromagnetic moments, transition probabilities and branching ratios, one-nucleon transfer spectroscopic factors) are discussed in the frame of multi-shell interacting boson-fermion model calculations. A good agreement is obtained for a large number of levels.


2017 ◽  
Vol 95 (3) ◽  
pp. 283-290 ◽  
Author(s):  
Min Xu ◽  
Anying Yan ◽  
Shuang Wu ◽  
Feng Hu ◽  
Xiangfu Li

Wavelengths, transition probabilities, and oscillator strengths have been calculated for M-shell electric dipole (E1) transitions in Al-like W61+ through Cl-like W57+, with partially filled 3p subshell. The fully relativistic multiconfiguration Dirac–Fock (MCDF) method, taking quantum electrodynamical effect and Breit correction into account, was used in the calculations. Calculated energy levels of M-shell excited states in Al-like through Cl-like W ions from the method were compared with some available theoretical and experimental results, and good agreement with them was achieved.


Atoms ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 48
Author(s):  
M. Raineri ◽  
M. Gallardo ◽  
J. Reyna Almandos ◽  
A. G. Trigueiros ◽  
C. J. B. Pagan

A capillary pulsed-discharge and a theta-pinch were used to record Kr spectra in the region of 330–4800 Å. A set of 168 transitions of these spectra were classified for the first time. We extended the analysis to twenty-five new energy levels belonging to 3s23p24d, 3s23p25d even configurations. We calculated weighted transition probabilities (gA) for all of the experimentally observed lines and lifetimes for new energy levels using a relativistic Hartree–Fock method, including core-polarization effects.


2021 ◽  
pp. 101420
Author(s):  
Yong Zhi Zhang ◽  
Li Guang Jiao ◽  
Fang Liu ◽  
Ai Hua Liu ◽  
Yew Kam Ho

2009 ◽  
Author(s):  
Magda A. Rahim ◽  
Beverly Karplus Hartline ◽  
Renee K. Horton ◽  
Catherine M. Kaicher

1995 ◽  
Vol 10 ◽  
pp. 588-590
Author(s):  
Dayal T. Wickramasinghe

White dwarfs are one of the most readily studied end products of stellarevolution. Their observed properties have provided and continue to provide important constraints for the theory of stellar evolution. Likewise, a study of magnetism in white dwarfs provides unique insights into the origin and evolution of magnetic fields in stars.Spectacular progress has been made on the specific problem of the structure of the hydrogen atom in strong fields. Energy levels and transition probabilities are now known for all low lying states of hydrogen for the entire range of field strengths appropriate to white dwarfs and neutron stars (104-1013G) (Rosner et al 1984, Forster et al 1984 and Henry and O’Connell 1984). These calculations resulted in the identification of spectral features in the magnetic white dwarf Grw+70°8247 which had remained unidentified for over 50 years (Minkowski 1938), with Zeeman shifted hydrogen lines in a magnetic field of 100 -320 MG ((eg Wickamasinghe and Ferrano 1989). Several other strong field magnetic white dwarfs have since been discovered through hydrogen Zeeman spectroscopy. The data presently at hand show that most hydrogen rich magnetic white dwarfs have complex non-dipolar field structures with strong evidence for higher order multipole components.


Sign in / Sign up

Export Citation Format

Share Document