Nuclear structure and α-decay study of Og isotopes

2019 ◽  
Vol 28 (06) ◽  
pp. 1950041 ◽  
Author(s):  
R. R. Swain ◽  
B. B. Sahu ◽  
P. K. Moharana ◽  
S. K. Patra

We have examined the binding energy, root-mean-square radii and two neutrons separation energies for the recently accepted super-heavy element [Formula: see text] established as Og using the axially deformed relativistic mean field (RMF) model with NL3 force parameter set. The calculation is extended to various isotopes of [Formula: see text] element, starting from [Formula: see text] till [Formula: see text]. The most stable isotope is found to be at [Formula: see text]. Also, the [Formula: see text]-decay energy [Formula: see text] and hence the half-lives [Formula: see text] is carried out by taking three different empirical formulae for the [Formula: see text]-decay chains of [Formula: see text] supporting the possible shell closure at daughter nuclei [Formula: see text] and/ or 184 and at parent nucleus of [Formula: see text] with [Formula: see text].

2013 ◽  
Vol 28 (16) ◽  
pp. 1350068 ◽  
Author(s):  
TUNCAY BAYRAM ◽  
A. HAKAN YILMAZ

The ground state energies, sizes and deformations of 1897 even–even nuclei with 10≤Z ≤110 have been carried out by using the Relativistic Mean Field (RMF) model. In the present calculations, the nonlinear RMF force NL3* recent refitted version of the NL3 force has been used. The BCS (Bardeen–Cooper–Schrieffer) formalism with constant gap approximation has been taken into account for pairing correlations. The predictions of RMF model for the ground state properties of some nuclei have been discussed in detail.


2008 ◽  
Vol 17 (09) ◽  
pp. 1765-1773 ◽  
Author(s):  
JIGUANG CAO ◽  
ZHONGYU MA ◽  
NGUYEN VAN GIAI

The microscopic properties and superfluidity of the inner crust in neutron stars are investigated in the framework of the relativistic mean field(RMF) model and BCS theory. The Wigner-Seitz(W-S) cell of inner crust is composed of neutron-rich nuclei immersed in a sea of dilute, homogeneous neutron gas. The pairing properties of nucleons in the W-S cells are treated in BCS theory with Gogny interaction. In this work, we emphasize on the choice of the boundary conditions in the RMF approach and superfluidity of the inner crust. Three kinds of boundary conditions are suggested. The properties of the W-S cells with the three kinds of boundary conditions are investigated. The neutron density distributions in the RMF and Hartree-Fock-Bogoliubov(HFB) models are compared.


2017 ◽  
Vol 26 (11) ◽  
pp. 1750072 ◽  
Author(s):  
G. Saxena ◽  
M. Kumawat ◽  
M. Kaushik ◽  
U. K. Singh ◽  
S. K. Jain ◽  
...  

We employ the relativistic mean-field plus BCS (RMF+BCS) approach to study the behavior of [Formula: see text]-shell by investigating in detail the single particle energies, and proton and neutron density profiles along with the deformations and radii of even–even nuclei. Emergence of new shell closure, weakly bound structure and most recent phenomenon of bubble structure are reported in the [Formula: see text]-shell. [Formula: see text]C, [Formula: see text]O and [Formula: see text]S are found to have a weakly bound structure due to particle occupancy in 2[Formula: see text] state. On the other hand [Formula: see text]O, [Formula: see text]Ca and [Formula: see text]Si are found with depleted central density due to the unoccupied 2[Formula: see text] state and hence they are the potential candidates of bubble structure. [Formula: see text]C and [Formula: see text]O emerge as doubly magic with [Formula: see text] in accord with the recent experiments and [Formula: see text]S emerges as a new proton magic nucleus with [Formula: see text]. [Formula: see text] and [Formula: see text] are predicted as magic numbers in doubly magic [Formula: see text]O, [Formula: see text]Ca and [Formula: see text]Si, respectively. These results are found in agreement with the recent experiments and have consistent with the other parameters of RMF and other theories.


2011 ◽  
Vol 20 (10) ◽  
pp. 2217-2228 ◽  
Author(s):  
B. K. SAHU ◽  
M. BHUYAN ◽  
S. MAHAPATRO ◽  
S. K. PATRA

We study the binding energy, root-mean-square radius and quadrupole deformation parameter for the synthesized superheavy element Z = 115, within the formalism of relativistic mean field theory. The calculation is dones for various isotopes of Z = 115 element, starting from A = 272 to A = 292. A systematic comparison between the binding energies and experimental data is made.The calculated binding energies are in good agreement with experimental result. The results show the prolate deformation for the ground state of these nuclei. The most stable isotope is found to be 282115 nucleus (N = 167) in the isotopic chain. We have also studied Qα and Tα for the α-decay chains of 287, 288115.


2008 ◽  
Vol 17 (09) ◽  
pp. 1720-1728
Author(s):  
L. DANG ◽  
P. YUE ◽  
L. LI ◽  
P. Z. NING

The hyperon density dependence (YDD) of hyperon-nucleon interactions are studied in the relativistic mean field (RMF) model and their influences on the properties of neutron stars are studied. The extended RMF considered the interior quarks coordinates of hyperon and bring a hyperon density dependent factor, f(ρY), to the meson-hyperon coupling vertexes. The hyperon density dependence of YN interaction affect the properties of neutron stars only after the corresponding hyperon appears. Then, the influences of the density dependence factors are almost ignored at low densities, which are clear at high densities. The compositions and properties of neutron stars are studied with and without the YDD of YN interactions for the different Σ--nucleus effective potentials, (30, 0, -30)MeV. The calculated results indicated that the YDD of YN interaction soften the equation of state of neutron stars at high densities.


2015 ◽  
Vol 24 (04) ◽  
pp. 1550028 ◽  
Author(s):  
M. Bhuyan ◽  
S. Mahapatro ◽  
S. K. Singh ◽  
S. K. Patra

We study the bulk properties such as binding energy (BE), root-mean-square (RMS) charge radius, quadrupole deformation etc. for Francium (Fr) isotopes having mass number A = 180–240 within the framework of relativistic mean field (RMF) theory. Systematic comparisons are made between the calculated results from RMF theory, Finite Range Droplet Model (FRDM) and the experimental data. Most of the nuclei in the isotopic chain shows prolate configuration in their ground state. The α-decay properties like α-decay energy and the decay half-life are also estimated for three different chains of 198 Fr , 199 Fr and 200 Fr . The calculation for the decay half-life are carried out by taking two different empirical formulae and the results are compared with the experimental data.


Author(s):  
M. Panigrahi ◽  
R.N. Panda ◽  
M. Bhuyan ◽  
S.K. Patra

The ground and first excited state structural properties like binding energy, charge radius, deformation parameter, pairing energy, and two-neutron separation energy for the isotopic chain of Z= 122 are analyzed. The axially deformed relativistic mean-field formalism with NL3* force parameter is used for the present analysis. Based on the analysis of binding energy per particle, chemical potential and single-particle spacing, we predict the isotopes of Z =122 with N = 180. 182 and 184 are the possible stable nuclei over the considered isotopic chain. The α-decay energies and the decay half-lives of <sup>302</sup>122 chains are investigated using four different empirical formulae. The results of our calculations are compared with the available experimental data and Finite Range Droplet Model predictions. We also established a correlation for the decay energy with the half-lives for the considered α-decay chains for various empirical formulae.


2009 ◽  
Vol 24 (11n13) ◽  
pp. 1067-1070
Author(s):  
S. WIBOWO ◽  
A. SULAKSONO

Effects of the ω meson self coupling (OMSC) on the thermal properties of asymmetric nuclear matter (ANM) are studied within the framework of relativistic mean field (RMF) model that includes contributions of all possible mixed interactions among meson fields involved up to quartic order. In particular, we study the mechanical and chemical instabilities (spinodal), as well as the liquid-gas phase transition (binodal) at finite temperature. It is found that the onset of spinodal instabilities and the binodal curve are only marginally affected by variation of the OMSC parameter, whereas the binodal curve shows a strong correlation to the symmetry energy. Comparison with other ERMF parameter sets is also performed.


Sign in / Sign up

Export Citation Format

Share Document