Exploring the α-decay chain of 302122 within relativistic mean field formalism

Author(s):  
M. Panigrahi ◽  
R.N. Panda ◽  
M. Bhuyan ◽  
S.K. Patra

The ground and first excited state structural properties like binding energy, charge radius, deformation parameter, pairing energy, and two-neutron separation energy for the isotopic chain of Z= 122 are analyzed. The axially deformed relativistic mean-field formalism with NL3* force parameter is used for the present analysis. Based on the analysis of binding energy per particle, chemical potential and single-particle spacing, we predict the isotopes of Z =122 with N = 180. 182 and 184 are the possible stable nuclei over the considered isotopic chain. The α-decay energies and the decay half-lives of <sup>302</sup>122 chains are investigated using four different empirical formulae. The results of our calculations are compared with the available experimental data and Finite Range Droplet Model predictions. We also established a correlation for the decay energy with the half-lives for the considered α-decay chains for various empirical formulae.

2013 ◽  
Vol 22 (04) ◽  
pp. 1350018 ◽  
Author(s):  
S. K. SINGH ◽  
S. MAHAPATRO ◽  
R. N. MISHRA

We study the extremely neutron-rich nuclei for Z = 17–23, 37–40 and 60–64 regions of the periodic table by using axially deformed relativistic mean field formalism with NL3* parametrization. Based on the analysis of binding energy, two neutron separation energy, quadrupole deformation and root mean square radii, we emphasized the speciality of these considered regions which are recently predicted islands of inversion.


2015 ◽  
Vol 24 (04) ◽  
pp. 1550028 ◽  
Author(s):  
M. Bhuyan ◽  
S. Mahapatro ◽  
S. K. Singh ◽  
S. K. Patra

We study the bulk properties such as binding energy (BE), root-mean-square (RMS) charge radius, quadrupole deformation etc. for Francium (Fr) isotopes having mass number A = 180–240 within the framework of relativistic mean field (RMF) theory. Systematic comparisons are made between the calculated results from RMF theory, Finite Range Droplet Model (FRDM) and the experimental data. Most of the nuclei in the isotopic chain shows prolate configuration in their ground state. The α-decay properties like α-decay energy and the decay half-life are also estimated for three different chains of 198 Fr , 199 Fr and 200 Fr . The calculation for the decay half-life are carried out by taking two different empirical formulae and the results are compared with the experimental data.


2019 ◽  
Vol 28 (06) ◽  
pp. 1950041 ◽  
Author(s):  
R. R. Swain ◽  
B. B. Sahu ◽  
P. K. Moharana ◽  
S. K. Patra

We have examined the binding energy, root-mean-square radii and two neutrons separation energies for the recently accepted super-heavy element [Formula: see text] established as Og using the axially deformed relativistic mean field (RMF) model with NL3 force parameter set. The calculation is extended to various isotopes of [Formula: see text] element, starting from [Formula: see text] till [Formula: see text]. The most stable isotope is found to be at [Formula: see text]. Also, the [Formula: see text]-decay energy [Formula: see text] and hence the half-lives [Formula: see text] is carried out by taking three different empirical formulae for the [Formula: see text]-decay chains of [Formula: see text] supporting the possible shell closure at daughter nuclei [Formula: see text] and/ or 184 and at parent nucleus of [Formula: see text] with [Formula: see text].


2017 ◽  
Vol 32 (37) ◽  
pp. 1750209
Author(s):  
Xiao-Yu Shu ◽  
Yong-Feng Huang ◽  
Hong-Shi Zong

The phase transition from a neutron star to a quark star and its relation to gamma-ray bursts are investigated. A new model: the 2 + 1 flavor Nambu–Jona-Lasinio (NJL) model with the method of proper-time regularization (PTR) is utilized for the quark phase; while the Relativistic Mean Field (RMF) theory is used for the hadronic phase. The process of phase transition is studied by considering the chemical potential, paying special attention to the phase transition point and the emergence of strange quark matter. Characteristics of compact stars are illustrated, and the energy release during the phase transition is found to be [Formula: see text] erg.


2011 ◽  
Vol 20 (10) ◽  
pp. 2217-2228 ◽  
Author(s):  
B. K. SAHU ◽  
M. BHUYAN ◽  
S. MAHAPATRO ◽  
S. K. PATRA

We study the binding energy, root-mean-square radius and quadrupole deformation parameter for the synthesized superheavy element Z = 115, within the formalism of relativistic mean field theory. The calculation is dones for various isotopes of Z = 115 element, starting from A = 272 to A = 292. A systematic comparison between the binding energies and experimental data is made.The calculated binding energies are in good agreement with experimental result. The results show the prolate deformation for the ground state of these nuclei. The most stable isotope is found to be 282115 nucleus (N = 167) in the isotopic chain. We have also studied Qα and Tα for the α-decay chains of 287, 288115.


2019 ◽  
Vol 100 (5) ◽  
Author(s):  
M. Bhuyan ◽  
B. V. Carlson ◽  
S. K. Patra ◽  
Raj K. Gupta

Sign in / Sign up

Export Citation Format

Share Document