FRACTAL CANTOR PATTERNS IN THE SEQUENCE STRUCTURE OF DNA

Fractals ◽  
2000 ◽  
Vol 08 (01) ◽  
pp. 15-27 ◽  
Author(s):  
A. PROVATA ◽  
Y. ALMIRANTIS

The coding parts of DNA sequences are regarded as clusters of connected sites of a random Cantor-like set, while the non-coding parts are regarded as the empty regions of the same set. Under this representation, we find that higher eucaryotes are mapped on random Cantor sets with fractal dimension around 0.85, while lower organisms are mapped on Cantor sets with fractal dimension 1. This result indicates that the coding/non-coding partition in the DNA sequences of lower organisms is homogeneous-like, while in the higher eucaryotes the partition is fractal. This result agrees with the power law distribution observed in the non-coding parts of higher eucaryotes.

2017 ◽  
Vol 50 (3) ◽  
pp. 919-931 ◽  
Author(s):  
A. Yu. Cherny ◽  
E. M. Anitas ◽  
V. A. Osipov ◽  
A. I. Kuklin

It is argued that a finite iteration of any surface fractal can be composed of mass-fractal iterations of the same fractal dimension. Within this assertion, the scattering amplitude of a surface fractal is shown to be a sum of the amplitudes of the composing mass fractals. Various approximations for the scattering intensity of surface fractals are considered. It is shown that small-angle scattering (SAS) from a surface fractal can be explained in terms of a power-law distribution of sizes of objects composing the fractal (internal polydispersity), provided the distance between objects is much larger than their size for each composing mass fractal. The power-law decay of the scattering intensityI(q) ∝ q^{D_{\rm s}-6}, where 2 <Ds< 3 is the surface-fractal dimension of the system, is realized as a non-coherent sum of scattering amplitudes of three-dimensional objects composing the fractal and obeying a power-law distribution dN(r) ∝r−τdr, withDs= τ − 1. The distribution is continuous for random fractals and discrete for deterministic fractals. A model of the surface deterministic fractal is suggested, the surface Cantor-like fractal, which is a sum of three-dimensional Cantor dusts at various iterations, and its scattering properties are studied. The present analysis allows one to extract additional information from SAS intensity for dilute aggregates of single-scaled surface fractals, such as the fractal iteration number and the scaling factor.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ghislain Romaric Meleu ◽  
Paulin Yonta Melatagia

AbstractUsing the headers of scientific papers, we have built multilayer networks of entities involved in research namely: authors, laboratories, and institutions. We have analyzed some properties of such networks built from data extracted from the HAL archives and found that the network at each layer is a small-world network with power law distribution. In order to simulate such co-publication network, we propose a multilayer network generation model based on the formation of cliques at each layer and the affiliation of each new node to the higher layers. The clique is built from new and existing nodes selected using preferential attachment. We also show that, the degree distribution of generated layers follows a power law. From the simulations of our model, we show that the generated multilayer networks reproduce the studied properties of co-publication networks.


2021 ◽  
Author(s):  
David A Garcia ◽  
Gregory Fettweis ◽  
Diego M Presman ◽  
Ville Paakinaho ◽  
Christopher Jarzynski ◽  
...  

Abstract Single-molecule tracking (SMT) allows the study of transcription factor (TF) dynamics in the nucleus, giving important information regarding the diffusion and binding behavior of these proteins in the nuclear environment. Dwell time distributions obtained by SMT for most TFs appear to follow bi-exponential behavior. This has been ascribed to two discrete populations of TFs—one non-specifically bound to chromatin and another specifically bound to target sites, as implied by decades of biochemical studies. However, emerging studies suggest alternate models for dwell-time distributions, indicating the existence of more than two populations of TFs (multi-exponential distribution), or even the absence of discrete states altogether (power-law distribution). Here, we present an analytical pipeline to evaluate which model best explains SMT data. We find that a broad spectrum of TFs (including glucocorticoid receptor, oestrogen receptor, FOXA1, CTCF) follow a power-law distribution of dwell-times, blurring the temporal line between non-specific and specific binding, suggesting that productive binding may involve longer binding events than previously believed. From these observations, we propose a continuum of affinities model to explain TF dynamics, that is consistent with complex interactions of TFs with multiple nuclear domains as well as binding and searching on the chromatin template.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Kai Zhao ◽  
Mirco Musolesi ◽  
Pan Hui ◽  
Weixiong Rao ◽  
Sasu Tarkoma

2004 ◽  
Vol 13 (07) ◽  
pp. 1345-1349 ◽  
Author(s):  
JOSÉ A. S. LIMA ◽  
LUCIO MARASSI

A generalization of the Press–Schechter (PS) formalism yielding the mass function of bound structures in the Universe is given. The extended formula is based on a power law distribution which encompasses the Gaussian PS formula as a special case. The new method keeps the original analytical simplicity of the PS approach and also solves naturally its main difficult (the missing factor 2) for a given value of the free parameter.


2009 ◽  
Vol 20 (1) ◽  
pp. 131-149 ◽  
Author(s):  
Péter Móra ◽  
Károly Simon ◽  
Boris Solomyak

2011 ◽  
Vol 116 (A10) ◽  
pp. n/a-n/a ◽  
Author(s):  
Andrew B. Collier ◽  
Thomas Gjesteland ◽  
Nikolai Østgaard

Sign in / Sign up

Export Citation Format

Share Document