ANALYSIS OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH MULTI-ORDERS

Fractals ◽  
2007 ◽  
Vol 15 (02) ◽  
pp. 173-182 ◽  
Author(s):  
WEIHUA DENG ◽  
CHANGPIN LI ◽  
QIAN GUO

In this paper, we study two kinds of fractional differential systems with multi-orders. One is a system of fractional differential equations with multi-order, [Formula: see text], [Formula: see text]; the other is a multi-order fractional differential equation, [Formula: see text]. By the derived technique, such two kinds of fractional differential equations can be changed into equations with the same fractional orders providing that the multi-orders are rational numbers, so the known theorems of existence, uniqueness and dependence upon initial conditions are easily applied. And asymptotic stability theorems for their associate linear systems, [Formula: see text], [Formula: see text], and [Formula: see text], [Formula: see text], [Formula: see text], are also derived.

2021 ◽  
Vol 32 (1) ◽  
pp. 14
Author(s):  
Nabaa N Hasan ◽  
Zainab John

In this paper, Sumudu transformation (ST) of Caputo fractional derivative formulae are derived for linear fractional differential systems. This formula is applied with Mittage-Leffler function for certain homogenous and nonhomogenous fractional differential systems with nonzero initial conditions. Stability is discussed by means of the system's distinctive equation.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Mohammed M. Matar ◽  
Esmail S. Abu Skhail

We study the Mittag-Leffler and class-K function stability of fractional differential equations with order α∈(1,2). We also investigate the comparison between two systems with Caputo and Riemann-Liouville derivatives. Two examples related to fractional-order Hopfield neural networks with constant external inputs and a marine protected area model are introduced to illustrate the applicability of stability results.


Fractals ◽  
2020 ◽  
Vol 28 (07) ◽  
pp. 2050131
Author(s):  
YONGFANG QI ◽  
LIANGSONG LI ◽  
XUHUAN WANG

This paper deals with the problem of Lyapunov inequalities for local fractional differential equations with boundary conditions. By using analytical method, a novel Lyapunov-type inequalities for the local fractional differential equations is provided. A systematic design algorithm is developed for the construction of Lyapunov inequalities.


2012 ◽  
Vol 9 (1) ◽  
pp. 59-64
Author(s):  
R.K. Gazizov ◽  
A.A. Kasatkin ◽  
S.Yu. Lukashchuk

In the paper some features of applying Lie group analysis methods to fractional differential equations are considered. The problem related to point change of variables in the fractional differentiation operator is discussed and some general form of transformation that conserves the form of Riemann-Liouville fractional operator is obtained. The prolongation formula for extending an infinitesimal operator of a group to fractional derivative with respect to arbitrary function is presented. Provided simple example illustrates the necessity of considering both local and non-local symmetries for fractional differential equations in particular cases including the initial conditions. The equivalence transformation forms for some fractional differential equations are discussed and results of group classification of the wave-diffusion equation are presented. Some examples of constructing particular exact solutions of fractional transport equation are given, based on the Lie group methods and the method of invariant subspaces.


2020 ◽  
Vol 23 (2) ◽  
pp. 553-570 ◽  
Author(s):  
Li Ma

AbstractThis paper is devoted to the investigation of the kinetics of Hadamard-type fractional differential systems (HTFDSs) in two aspects. On one hand, the nonexistence of non-trivial periodic solutions for general HTFDSs, which are considered in some functional spaces, is proved and the corresponding eigenfunction of Hadamard-type fractional differential operator is also discussed. On the other hand, by the generalized Gronwall-type inequality, we estimate the bound of the Lyapunov exponents for HTFDSs. In addition, numerical simulations are addressed to verify the obtained theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
M. H. Heydari ◽  
M. R. Hooshmandasl ◽  
F. M. Maalek Ghaini ◽  
F. Mohammadi

The operational matrices of fractional-order integration for the Legendre and Chebyshev wavelets are derived. Block pulse functions and collocation method are employed to derive a general procedure for forming these matrices for both the Legendre and the Chebyshev wavelets. Then numerical methods based on wavelet expansion and these operational matrices are proposed. In this proposed method, by a change of variables, the multiorder fractional differential equations (MOFDEs) with nonhomogeneous initial conditions are transformed to the MOFDEs with homogeneous initial conditions to obtain suitable numerical solution of these problems. Numerical examples are provided to demonstrate the applicability and simplicity of the numerical scheme based on the Legendre and Chebyshev wavelets.


Fractals ◽  
2009 ◽  
Vol 17 (04) ◽  
pp. 467-472 ◽  
Author(s):  
C. H. EAB ◽  
S. C. LIM ◽  
K. H. MAK

Recently, Deng et al. showed that a special class of coupled fractional differential equations of Caputo type with unequal rational multi-orders 0 < αi < 1 can be transformed to an equivalent system with common equal order. This paper generalizes the result to coupled differential equations of arbitrary multi-fractional orders for both Caputo and Riemann-Liouville fractional derivatives.


Sign in / Sign up

Export Citation Format

Share Document