scholarly journals A DISCUSSION ON THE TRANSMISSION CONDITIONS FOR SATURATED FLUID FLOW THROUGH POROUS MEDIA WITH FRACTAL MICROSTRUCTURE

Fractals ◽  
2019 ◽  
Vol 27 (03) ◽  
pp. 1950033 ◽  
Author(s):  
FERNANDO A. MORALES ◽  
LUIS C. ARISTIZÁBAL

This work is aimed to find suitable exchange conditions for saturated fluid flow in a porous medium, when a fractal microstructure is embedded in the porous matrix. Two different deterministic models are introduced and rigorously analyzed. Also, numerical experiments for each of them are presented to verify the theoretically predicted behavior of the phenomenon and some probabilistic versions are explored numerically to gain further insight on the phenomenon.

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Maria Laura Martins-Costa ◽  
Daniel Cunha da Silva ◽  
Michele Cunha da Silva ◽  
Rogério Martins Saldanha da Gama

The present work proposes an adequate constitutive relation to treat the process of filling with a fluid porous medium. This relation assures the problem to remain hyperbolic when the porous medium is saturated by the fluid. When the fluid fraction reaches porosity, the proposed constitutive relation increases the porous matrix resistance to more fluid inlet due to an important feature: it is a continuous and differentiable function with first derivative being also an increasing function. This allows assuring that the fluid fraction may exceed the porosity only by a very small value, making the constitutive relation realistic. Some examples compare this new constitutive relation with previous ones, highlighting its advantages.


1994 ◽  
Vol 28 (6) ◽  
pp. 808-813
Author(s):  
V. V. Kadet ◽  
R. M. Musin ◽  
V. I. Selyakov

2013 ◽  
Vol 8-9 ◽  
pp. 225-234
Author(s):  
Dalia Sabina Cimpean

The present study is focused on the mixed convection fluid flow through a porous medium, when a different amount of nanoparticles is added in the base fluid. The nanofluid saturates the porous matrix and different situations of the flow between two walls are presented and discussed. Alternatively mathematical models are presented and discussed. A solution of a system which contains the momentum, Darcy and energy equations, together with the boundary conditions involved, is given. The behavior of different nanofluids, such thatAu-water, Ag-waterandFe-wateris graphically illustrated and compared with the previous results.The research target is to observe the substantial increase of the thermophysical fluid properties, when the porous medium issaturated by a nanofluid instead of a classical Newtonian fluid.


1999 ◽  
Author(s):  
Mario F. Letelier ◽  
César E. Rosas

Abstract A theoretical study of the fully developed fluid flow through a confined porous medium is presented. The fluid is described by the Bingham plastic model for small values of the yield number. The analysis allows for many admissible shapes of the wall contour. The velocity field is computed for several combination of relevant parameters, i.e., the yield number, Darcy resistance coefficient and the boundary perturbation parameter. The wall effect is especially highlighted and the characteristics of the central plug region as well. Plots of isovel curves and velocity profiles are included for a variety of flow and geometry parameters.


Sign in / Sign up

Export Citation Format

Share Document