scholarly journals GLOBAL EXISTENCE OF TIMOSHENKO SYSTEM WITH RESPECT TO FRACTIONAL MEMORY OPERATOR, SPATIAL FRACTIONAL THERMAL EFFECT AND DISTRIBUTED DELAY

Fractals ◽  
2021 ◽  
pp. 2240006
Author(s):  
ABDELBAKI CHOUCHA ◽  
SALAH BOULAARAS ◽  
DJAMEL OUCHENANE ◽  
ASMA ALHARBI ◽  
MOHAMED ABDALLA

In this paper, the Timoshenko system with distributed delay term, fractional operator in the memory and spatial fractional thermal effect is considered, we will prove under some assumptions the global existence of a weak solution. Furthermore, we show some results about the stability of system by the semigroup method.

2014 ◽  
Vol 21 (4) ◽  
Author(s):  
Djamel Ouchenane

AbstractIn this paper, we consider a one-dimensional linear thermoelastic system of Timoshenko type with a delay term in the feedback. The heat conduction is given by Cattaneo's law. Under an appropriate assumption between the weight of the delay and the weight of the damping, we prove the well-posedness of the problem. Furthermore, an exponential stability result is shown without the usual assumption on the wave speeds. To achieve our goals, we make use of the semigroup method and the energy method.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Djamel Ouchenane ◽  
Abdelbaki Choucha ◽  
Mohamed Abdalla ◽  
Salah Mahmoud Boulaaras ◽  
Bahri Belkacem Cherif

The paper deals with a one-dimensional porous-elastic system with thermoelasticity of type III and distributed delay term. This model is dealing with dynamics of engineering structures and nonclassical problems of mathematical physics. We establish the well posedness of the system, and by the energy method combined with Lyapunov functions, we discuss the stability of system for both cases of equal and nonequal speeds of wave propagation.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Abdelbaki Choucha ◽  
Salah Mahmoud Boulaaras ◽  
Djamel Ouchenane ◽  
Ali Allahem

In this current work, we are interested in a system of two singular one-dimensional nonlinear equations with a viscoelastic, general source and distributed delay terms. The existence of a global solution is established by the theory of potential well, and by using the energy method with the function of Lyapunov, we prove the general decay result of our system.


Author(s):  
Abdelhak Djebabla ◽  
Abdelbaki Choucha ◽  
Djamel Ouchenane ◽  
Khaled Zennir

2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Wen-Juan Wang ◽  
Yan Jia

We study the stability issue of the generalized 3D Navier-Stokes equations. It is shown that if the weak solutionuof the Navier-Stokes equations lies in the regular class∇u∈Lp(0,∞;Bq,∞0(ℝ3)),(2α/p)+(3/q)=2α,2<q<∞,0<α<1, then every weak solutionv(x,t)of the perturbed system converges asymptotically tou(x,t)asvt-utL2→0,t→∞.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Fatmawati ◽  
Muhammad Altaf Khan ◽  
Cicik Alfiniyah ◽  
Ebraheem Alzahrani

AbstractIn this work, we study the dengue dynamics with fractal-factional Caputo–Fabrizio operator. We employ real statistical data of dengue infection cases of East Java, Indonesia, from 2018 and parameterize the dengue model. The estimated basic reduction number for this dataset is $\mathcal{R}_{0}\approx2.2020$ R 0 ≈ 2.2020 . We briefly show the stability results of the model for the case when the basic reproduction number is $\mathcal{R}_{0} <1$ R 0 < 1 . We apply the fractal-fractional operator in the framework of Caputo–Fabrizio to the model and present its numerical solution by using a novel approach. The parameter values estimated for the model are used to compare with fractal-fractional operator, and we suggest that the fractal-fractional operator provides the best fitting for real cases of dengue infection when varying the values of both operators’ orders. We suggest some more graphical illustration for the model variables with various orders of fractal and fractional.


Sign in / Sign up

Export Citation Format

Share Document