scholarly journals On the Porous-Elastic System with Thermoelasticity of Type III and Distributed Delay: Well-Posedness and Stability

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Djamel Ouchenane ◽  
Abdelbaki Choucha ◽  
Mohamed Abdalla ◽  
Salah Mahmoud Boulaaras ◽  
Bahri Belkacem Cherif

The paper deals with a one-dimensional porous-elastic system with thermoelasticity of type III and distributed delay term. This model is dealing with dynamics of engineering structures and nonclassical problems of mathematical physics. We establish the well posedness of the system, and by the energy method combined with Lyapunov functions, we discuss the stability of system for both cases of equal and nonequal speeds of wave propagation.

Author(s):  
Ilyes Lacheheb ◽  
Salim A. Messaoudi ◽  
Mostafa Zahri

AbstractIn this work, we investigate a one-dimensional porous-elastic system with thermoelasticity of type III. We establish the well-posedness and the stability of the system for the cases of equal and nonequal speeds of wave propagation. At the end, we use some numerical approximations based on finite difference techniques to validate the theoretical results.


2021 ◽  
Vol 52 ◽  
Author(s):  
Abdelbaki Choucha ◽  
Djamel Ouchenane ◽  
Khaled Zennir

As a continuity to the study by T. A. Apalarain[3], we consider a one-dimensional porous-elastic system with the presence of both memory and distributed delay terms in the second equation. Using the well known energy method combined with Lyapunov functionals approach, we prove a general decay result given in Theorem 2.1.


Author(s):  
Abdelli Manel ◽  
Lamine Bouzettouta ◽  
Guesmia Amar ◽  
Baibeche Sabah

In this paper we consider a one-dimensional swelling porous-elastic system with second sound and delay term acting on the porous equation. Under suitable assumptions on the weight of delay, we establish the well-posedness of the system by using semigroup theory and we prove that the unique dissipation due to the delay time is strong enough to exponentially stabilize the system when the speeds of wave propagation are equal.


2021 ◽  
Vol 5 (1) ◽  
pp. 147-161
Author(s):  
Soh Edwin Mukiawa ◽  

In the present work, we study the effect of time varying delay damping on the stability of a one-dimensional porous-viscoelastic system. We also illustrate our findings with some examples. The present work improve and generalize existing results in the literature.


2014 ◽  
Vol 21 (4) ◽  
Author(s):  
Djamel Ouchenane

AbstractIn this paper, we consider a one-dimensional linear thermoelastic system of Timoshenko type with a delay term in the feedback. The heat conduction is given by Cattaneo's law. Under an appropriate assumption between the weight of the delay and the weight of the damping, we prove the well-posedness of the problem. Furthermore, an exponential stability result is shown without the usual assumption on the wave speeds. To achieve our goals, we make use of the semigroup method and the energy method.


2021 ◽  
Vol 26 (3) ◽  
pp. 396-418
Author(s):  
Wenjun Liu ◽  
Weifan Zhao

In this paper, we investigate the stabilization of a one-dimensional thermoelastic laminated beam with structural damping coupled with a heat equation modeling an expectedly dissipative effect through heat conduction governed by Gurtin–Pipkin thermal law. Under some assumptions on the relaxation function g, we establish the well-posedness of the problem by using Lumer–Phillips theorem. Furthermore, we prove the exponential stability and lack of exponential stability depending on a stability number by using the perturbed energy method and Gearhart–Herbst–Prüss–Huang theorem, respectively.


Author(s):  
Wenjun Liu ◽  
Weifan Zhao

In this paper, we investigate the stabilization of a one-dimensional thermoelastic laminated beam with structural damping, coupled to a heat equation modeling an expectedly dissipative effect through heat conduction governed by Gurtin-Pipkin thermal law. Under some assumptions on the relaxation function g, we establish the well-posedness for the problem. Furthermore, we prove the exponential stability and lack of exponential stability for the problem. To achieve our goals, we make use of the semigroup method, the perturbed energy method and Gearhart-Herbst-Prüss-Huang theorem.


Mathematica ◽  
2021 ◽  
Vol 63 (86) (1) ◽  
pp. 58-76
Author(s):  
Douib Madani ◽  
Salah Zitouni ◽  
Djebabla Abdelhak

We study the well-posedness and asymptotic behaviour of solutions to a laminated beam in thermoelasticity of type III with delay term in the first equation. We show that the system is well-posed by using Lumer-Philips theorem and prove that the system is exponentially stable if and only if the wave speeds are equal.


Sign in / Sign up

Export Citation Format

Share Document