The PSTD Method with the 4th-Order Time Integration for 3D TAT Reconstruction of a Breast Model

2014 ◽  
Vol 22 (04) ◽  
pp. 1450011 ◽  
Author(s):  
Gang Ye ◽  
Chunhua Deng ◽  
Qing Huo Liu

The thermoacoustic tomography (TAT) is a novel noninvasive and nonionizing medical imaging modality for breast cancer detection. In the TAT, a short pulse of microwave is irradiated to the breast tissue. The tissue absorbs the microwave energy and is heated up momentarily, thus it generates acoustic waves due to the thermoelastic expansion. If the pulse width of the microwave radiation is around one microsecond, the generated acoustic waves are ultrasonic and are in the MHz range. Wide-band ultrasonic transducers are employed to acquire the time-resolved ultrasound signals, which carry information about the microwave absorption properties (mainly related to conductivities) of different tissues. An image showing such properties can then be reconstructed from the time-resolved ultrasound signals. Most existing TAT reconstruction methods are based on the assumption that the tissue under study is acoustically homogeneous. In practice, however, most biological tissues are inhomogeneous. For example, the speed of sound has about 10% variation in breast tissue. The acoustic heterogeneity will cause phase distortion of the pressure field, which will in turn cause blurring in the reconstructed image, thus limiting the ability to resolve small objects. In this work, a 3D inhomogeneous reconstruction method based on pseudo-spectral time-domain (PSTD) is presented to overcome this problem. The method includes two steps. The first step is a homogeneous reconstruction process, from which an initial image is obtained. Since the inhomogeneity itself is usually an acoustic source, the shape and location of the inhomogeneity can be estimated. Then, the acoustic properties of the inhomogeneities (available from the literatures for known tissue types) are assigned to the classified regions, and the other reconstruction based on the updated acoustic property map is conducted. With this process, the phase distortion can be effectively corrected. So it can improve the ability to image small objects. A 3D breast phantom is used to study the proposed method. The breast phantom was generated based on the data set of the Visible Human Project. Regions of different tissue types have been classified and acoustic and electric properties are assigned to such regions. Small phantom tumors placed in the breast phantom have been reconstructed successfully with the inhomogeneous reconstruction method. Improved resolution has been achieved compared to that obtained by homogeneous method.

AIP Advances ◽  
2013 ◽  
Vol 3 (7) ◽  
pp. 072127 ◽  
Author(s):  
T. Reusch ◽  
F. Schülein ◽  
C. Bömer ◽  
M. Osterhoff ◽  
A. Beerlink ◽  
...  

1992 ◽  
Vol 25 (7) ◽  
pp. 814
Author(s):  
Vladimir V. Shorokhov ◽  
Vadim N. Voronkov ◽  
Alexander N. Klishko

2021 ◽  
Author(s):  
Jens Satria Müller ◽  
Finn Lückoff ◽  
Thomas Ludwig Kaiser ◽  
Christian Oliver Paschereit ◽  
Kilian Oberleithner

Abstract In order to determine the flame transfer function of a combustion system only based on isothermal flow field data, three governing mechanisms have been identified which need to be modeled: swirl fluctuations, equivalence fluctuations and velocity fluctuations excited by planar acoustic waves. This study focuses on the generation and propagation of swirl fluctuations downstream of a radial swirl combustor under isothermal conditions. Swirl fluctuations are generated experimentally by imposing acoustic perturbations. Time-resolved longitudinal and crosswise PIV measurements are conducted inside the mixing tube and combustion chamber to quantify the evolution of the swirl fluctuations. The measured flow response is decomposed using spectral proper orthogonal decomposition to unravel the contributions of different dynamical modes. In addition a resolvent analysis is conducted based on the linearized Navier-Stokes equations to reveal the intrinsically most amplified flow structures. Both, the data-driven and analytic approach, show that inertial waves are indeed present in the flow response and an inherent flow instability downstream of the swirler, which confirms the recent theoretical work of Albayrak et al. (Journal of Fluid Mechanics, 879). However, the contribution of these inertial waves to the total swirl fluctuations turns out to be very small. This is suggested to be due to the very structured forcing at the swirler and the amplification of shear-driven modes which are expected to be much more influential for this type of swirler. Overall, this work confirms the presence of inertial waves in highly turbulent swirl combustors and evaluates its relevance for industry-related configurations. It further outlines a methodology to analyze and predict their characteristics based on mean fields only, which is applicable for complex geometries of industrial relevance.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Y. Zhang ◽  
B. P. Wang ◽  
Y. Fang ◽  
Z. X. Song

The existing sparse imaging observation error estimation methods are to usually estimate the error of each observation position by substituting the error parameters into the iterative reconstruction process, which has a huge calculation cost. In this paper, by analysing the relationship between imaging results of single-observation sampling data and error parameters, a SAR observation error estimation method based on maximum relative projection matching is proposed. First, the method estimates the precise position parameters of the reference position by the sparse reconstruction method of joint error parameters. Second, a relative error estimation model is constructed based on the maximum correlation of base-space projection. Finally, the accurate error parameters are estimated by the Broyden–Fletcher–Goldfarb–Shanno method. Simulation and measured data of microwave anechoic chambers show that, compared to the existing methods, the proposed method has higher estimation accuracy, lower noise sensitivity, and higher computational efficiency.


2017 ◽  
Vol 830 ◽  
pp. 494-527 ◽  
Author(s):  
Justin L. Wagner ◽  
Steven J. Beresh ◽  
Katya M. Casper ◽  
Edward P. DeMauro ◽  
Srinivasan Arunajatesan

The resonance modes in Mach 0.94 turbulent flow over a cavity having a length-to-depth ratio of five were explored using time-resolved particle image velocimetry (TR-PIV) and time-resolved pressure sensitive paint (TR-PSP). Mode switching was quantified in the velocity field simultaneous with the pressure field. As the mode number increased from one through three, the resonance activity moved from a region downstream within the recirculation region to areas further upstream in the shear layer, an observation consistent with linear stability analysis. The second and third modes contained organized structures associated with shear layer vortices. Coherent structures occurring in the velocity field during modes two and three exhibited a clear modulation in size with streamwise distance. The streamwise periodicity was attributable to the interference of downstream-propagating vortical disturbances with upstream-travelling acoustic waves. The coherent structure oscillations were approximately $180^{\circ }$ out of phase with the modal surface pressure fluctuations, analogous to a standing wave. Modal propagation (or phase) velocities, based on cross-correlations of bandpass-filtered velocity fields were found for each mode. The phase velocities also showed streamwise periodicity and were greatest at regions of maximum constructive interference where coherent structures were the largest. Overall, the phase velocities increased with modal frequency, which coincided with the modal activity residing at higher portions of the cavity where the local mean flow velocity was elevated. Together, the TR-PIV and TR-PSP provide unique details not only on the distribution of modal activity throughout the cavity, but also new understanding of the resonance mechanism as observed in the velocity field.


1994 ◽  
Author(s):  
Oliver Schuetz ◽  
Hans-Erich Reinfelder ◽  
Klaus W. Klingenbeck-Regn ◽  
Hartmut Bartelt

2003 ◽  
Author(s):  
Mary-Ann Mycek ◽  
Karthik Vishwanath ◽  
Brian W. Pogue ◽  
Kevin T. Schomacker ◽  
Norman S. Nishioka

Sign in / Sign up

Export Citation Format

Share Document