Multiresolution Reproducing Kernel Particle Methods in Acoustics

1997 ◽  
Vol 05 (01) ◽  
pp. 71-94 ◽  
Author(s):  
R. A. Uras ◽  
C.-T. Chang ◽  
Y. Chen ◽  
W. K. Liu

In the analysis of complex phenomena of acoustic systems, the computational modeling requires special attention in order to give a realistic representation of the physics. As a powerful tool, the finite element method has been widely used in the study of complex systems. In order to capture the important physical phenomena, p-finite elements and/or hp-finite elements are employed. The Reproducing Kernel Particle Methods (RKPM) are emerging as an effective alternative due to the absence of a mesh and the ability to analyze a specific frequency range. In this study, a wavelet particle method based on the multiresolution analysis encountered in signal processing has been developed. The interpolation functions consist of spline functions with a built-in window which permits translation as well as dilation. A variation in the size of the window implies a geometrical refinement and allows the filtering of the desired frequency range. An adaptivity similar to hp-finite element method is obtained through the choice of an optimal dilation parameter. The analysis of the wave equation shows the effectiveness of this approach. The frequency/wave number relationship of the continuum case can be closely simulated by using the reproducing kernel particle methods. A similar methodology is also developed for the Timoshenko beam.

Author(s):  
W. K. Liu ◽  
C. T. Chang ◽  
Y. Chen ◽  
R. A. Uras

Abstract In the analysis of complex phenomena of acoustic systems, the computational modeling requires special attention for a realistic representation of the physics. As a powerful tool, the finite element method has been widely used in the study of complex systems. In order to capture the important physical phenomena, p-finite elements and/or hp-finite elements are employed. The reproducing kernel particle methods (RKPM) are emerging as an effective alternative due to the elimination of a mesh, and the ability to analyze a specific frequency range. Additionally, a wavelet particle method based on the multiresolution analysis encountered in signal processing has been developed. The interpolation functions consist of spline functions with built-in window. A variation in the size of the window implies a geometrical refinement, and allows the filtering of the desired frequency range. Preliminary analysis of the wave equation shows the effectiveness of this approach. The frequency/wave number relationship of the continuum case can be closely simulated by using the reproducing kernel particle methods. A similar methodology is also developed for the Timoshenko beam.


1997 ◽  
Vol 64 (4) ◽  
pp. 861-870 ◽  
Author(s):  
Wing Kam Liu ◽  
R. A. Uras ◽  
Y. Chen

The reproducing kernel particle method (RKPM) has attractive properties in handling high gradients, concentrated forces, and large deformations where other widely implemented methodologies fail. In the present work, a multiple field computational procedure is devised to enrich the finite element method with RKPM, and RKPM with analytical functions. The formulation includes an interaction term that accounts for any overlap between the fields, and increases the accuracy of the computational solutions in a coarse mesh or particle grid. By replacing finite element method shape Junctions at selected nodes with higher-order RKPM window functions, RKPM p-enrichment is obtained. Similarly, by adding RKPM window functions into a finite element method mesh, RKPM hp-enrichment is achieved analogous to adaptive refinement. The fundamental concepts of the multiresolution analysis are used to devise an adaptivity procedure.


2012 ◽  
Vol 170-173 ◽  
pp. 3338-3344
Author(s):  
Xia Xin Tao ◽  
Xin Zheng ◽  
Fu Tong Wang

A numerical case study is presented in this paper to demonstrate the feasibility of a finite element method with artificial boundary condition to simulate the wave in 3D ground soil. An unit centralized harmonic excitation at surface is adopted with four frequencies. The calculated vibration amplitudes are compared with the corresponding results by dynamic Green Function in frequency-wave number domain. The result shows a clear calculation error phenomena that the smaller mesh adopted, the smaller error is for a given frequency, and the lower frequency excited so the smaller error is for a given mesh size. A preliminary suggestion is presented as that the maximum mesh size of a 3D discrete grid must be no larger than 1/25 of the minimum wave length.


2017 ◽  
Vol 22 (1) ◽  
pp. 133-156 ◽  
Author(s):  
Yu Du ◽  
Zhimin Zhang

AbstractWe study the error analysis of the weak Galerkin finite element method in [24, 38] (WG-FEM) for the Helmholtz problem with large wave number in two and three dimensions. Using a modified duality argument proposed by Zhu and Wu, we obtain the pre-asymptotic error estimates of the WG-FEM. In particular, the error estimates with explicit dependence on the wave numberkare derived. This shows that the pollution error in the brokenH1-norm is bounded byunder mesh conditionk7/2h2≤C0or (kh)2+k(kh)p+1≤C0, which coincides with the phase error of the finite element method obtained by existent dispersion analyses. Herehis the mesh size,pis the order of the approximation space andC0is a constant independent ofkandh. Furthermore, numerical tests are provided to verify the theoretical findings and to illustrate the great capability of the WG-FEM in reducing the pollution effect.


1974 ◽  
Vol 16 (2) ◽  
pp. 101-108 ◽  
Author(s):  
P. Shelly ◽  
C. Ettles

A method using finite elements for the whirl analysis of plain bearings is outlined. The special properties of an exponentially shaped element are linked to a parabolic type of approximation for the axial pressure profile. The method is developed and applied to the prediction of whirl paths of a heavy rotor operating both in the horizontal and vertical modes. Several locus paths are presented to show the separate and combined effects of rotor unbalance and unidirectional loading over a range of rotational speeds.


1988 ◽  
Vol 25 (1) ◽  
pp. 33-49 ◽  
Author(s):  
S. Ratnajeevan H. Hoole

The rationale for teaching undergraduate electromagnetics partly through the finite element method, is put forward. Properly presented, the finite element method, easily within the ken of the engineering undergraduate, promotes clarity and helps to replace large portions of syllabi devoted to special solution methods, with problems of industrial magnitude and character.


2020 ◽  
Vol 226 ◽  
pp. 02007
Author(s):  
Galmandakh Chuluunbaatar ◽  
Alexander A. Gusev ◽  
Ochbadrakh Chuluunbaatar ◽  
Vladimir P. Gerdt ◽  
Sergue I. Vinitsky ◽  
...  

A new algorithm for constructing multivariate interpolation Hermite polynomials in analytical form in a multidimensional hypercube is presented. These polynomials are determined from a specially constructed set of values of the polynomials themselves and their partial derivatives with continuous derivatives up to a given order on the boundaries of the finite elements. The effciency of the finite element schemes, algor thms and programs is demonstrated by solving the Helmholtz problem for a cube.


Author(s):  
Dominique Bigot ◽  
Hocine Kebir ◽  
Jean-Marc Roelandt

Nowadays, the simulation of forming processes is rather well integrated in the industrial numerical codes. However, to take into account the possible modifications of the tool during cycle of working, we develop dedicated numerical software. This one more particularly will allow the identification of the fatigue criteria of the tool. With the view to conceiving the optimal shapes of tool allowing increasing their lifespan while ensuring a quality required of the part thus manufactured. This latter uses coupling with friction finite element method — for modelling the axi-symmetric part — and boundary element method — for modelling the tool. For the validation, we modeled forming process.


Sign in / Sign up

Export Citation Format

Share Document