Propagation dynamics of cosh-Airy beams in Kerr nonlinear media

2019 ◽  
Vol 28 (03) ◽  
pp. 1950030
Author(s):  
Jinyu Liu ◽  
Ruiyun Jiao ◽  
Jing Wang ◽  
Zhendong Yang ◽  
Kaiyun Zhan

We investigate propagation dynamics of cosh- and cosine-Airy beams in Kerr nonlinear media. The cosh-Airy and cosine-Airy beam can be considered as a superposition of two Airy beams with different decay factors and different propagation trajectories, respectively. It is shown that the solitons shedding from cosh-Airy and cosine-Airy beams and their interaction in both in-phase and out-of-phase cases are strongly dependent on the modulation parameter associated with the cosh function. The interaction between two cosine-Airy beams can exhibit attraction or repulsion under proper interval and initial angle condition in both in-phase and out-of-phase cases.

Nanophotonics ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Qingqing Cheng ◽  
Juncheng Wang ◽  
Ling Ma ◽  
Zhixiong Shen ◽  
Jing Zhang ◽  
...  

AbstractAiry beams exhibit intriguing properties such as nonspreading, self-bending, and self-healing and have attracted considerable recent interest because of their many potential applications in photonics, such as to beam focusing, light-sheet microscopy, and biomedical imaging. However, previous approaches to generate Airy beams using photonic structures have suffered from severe chromatic problems arising from strong frequency dispersion of the scatterers. Here, we design and fabricate a metasurface composed of silicon posts for the frequency range 0.4–0.8 THz in transmission mode, and we experimentally demonstrate achromatic Airy beams exhibiting autofocusing properties. We further show numerically that a generated achromatic Airy-beam-based metalens exhibits self-healing properties that are immune to scattering by particles and that it also possesses a larger depth of focus than a traditional metalens. Our results pave the way to the realization of flat photonic devices for applications to noninvasive biomedical imaging and light-sheet microscopy, and we provide a numerical demonstration of a device protocol.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 879
Author(s):  
Li Shao ◽  
Yun-Long Wu ◽  
Qing Ye

The propagation characteristics of a single Airy beam in nonlinear Kerr media were numerically investigated by utilizing the split-step Fourier transform method. We show that in addition to normal breathing solitons, the anomalous bound states of Airy spatial solitons can also be formed, which are similar to the states formed in the interaction between two Airy beams in nonlinear media. This quasi-equilibrium state is formed by the interaction of the main soliton beam and side lobes of Airy beam due to their different propagation trajectories in the nonlinear media. Moreover, it has been shown the Airy spatial solitons in tree structure can be formed by adjusting the initial parameters in the interaction between the Airy beam and Kerr media.


1992 ◽  
Vol 69 (17) ◽  
pp. 2503-2506 ◽  
Author(s):  
G. A. Swartzlander ◽  
C. T. Law

2016 ◽  
Vol 28 (15) ◽  
pp. 1621-1624 ◽  
Author(s):  
Simi Huang ◽  
Xiaohui Shi ◽  
Yanfeng Bai ◽  
Xiquan Fu

Sign in / Sign up

Export Citation Format

Share Document