modulation parameter
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 13)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Wenping Wu

Based on the active interference suppression algorithm, this study combines the radar working mode and the interference type and realizes the effective detection of the flaw detection signal by successively processing the radar receiving signal and the filtering processing. Firstly, this article builds a simulation platform similar to the actual situation to verify the existing conventional active interference suppression algorithms. Secondly, for the detection of chirp active deception jamming signals entering from the main lobe, a radar active deception jamming detection method based on the characteristic parameter matching of the harmonic components of active deception jamming signals is proposed. After that, the spectral characteristics of the harmonic components of the deception interference signal are analyzed, and the center frequency and the tuning frequency of the real target echo are obtained. Finally, by establishing a frequency modulation parameter library for possible interference harmonic signal components, the acquisition phase of the radar gate by the jammer matched analysis with the preestablished frequency modulation parameter library is implemented to achieve active deception interference detection. This method can effectively detect active deception jamming signals in a complex tunnel environment. The interference suppression algorithms verified by simulation include noise FM interference suppression algorithm based on cancellation and distance false target interference suppression algorithm based on LFM radar summary processing. Through actual measurement data processing and analysis, the effectiveness of the method is verified and the idea of interference suppression is expanded. The construction of the simulation platform is obtained by appropriately modifying the actual parameters, a certain type of suppression jammer, and a certain type of deception jammer used in a certain countermeasure field test at a radar station.


2021 ◽  
Vol 2038 (1) ◽  
pp. 012015
Author(s):  
Hugh Jones ◽  
Mykola Kulishov

Abstract We explore a co-directional coupling arrangement between two waveguides mediated by a PT-symmetric sinusoidal grating characterized by an index-modulation parameter κ and a gain/loss parameter g. We show that the device supports soliton-like solutions for both the PT -conserving regime g < κ and the PT -broken regime g > κ. In the first case the coupler exhibits a gap in wave-number k and the solitons can be regarded as an extension of a previous solution found for pure index modulation. In the second case the coupler exhibits a gap in frequency ω and the solutions are entirely new.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4362
Author(s):  
Yue Chen ◽  
Xiang Chen ◽  
Yingke Lei

Specific transmitter identification (SEI) is a technology that uses a received signal to identify to which individual radiation source the transmitted signal belongs. It can complete the identification of the signal transmitter in a non-cooperative scenario. Therefore, there are broad application prospects in the field of wireless-communication-network security, spectral resource management, and military battlefield-target communication countermeasures. This article demodulates and reconstructs a digital modulation signal to obtain a signal without modulator distortion and power-amplifier nonlinearity. Comparing the reconstructed signal with the actual received signal, the coefficient representation of the nonlinearity of the power amplifier and the distortion of the modulator can be obtained, and these coefficients can be used as the fingerprint characteristics of different transmitters through a convolutional neural network (CNN) to complete the identification of specific transmitters. The existing SEI strategy for changing the modulation parameters of a test signal is to mix part of the test signal with the training signal so that the classifier can learn the signal of which the modulation parameter was changed. This method is still data-oriented and cannot process signals for which the classifier has not been trained. It has certain limitations in practical applications. We compared the fingerprint features extracted by the method in this study with the fingerprint features extracted by the bispectral method. When SNR < 20 dB, the recognition accuracy of the bispectral method dropped rapidly. The method in this paper still achieved 86% recognition accuracy when SNR = 0 dB. When the carrier frequency of the test signal was changed, the bispectral feature failed, and the proposed method could still achieve a recognition accuracy of about 70%. When changing the test-signal baud rate, the proposed method could still achieve a classification accuracy rate of more than 70% for four different individual radiation sources when SNR = 0 dB.


2020 ◽  
Vol 17 (2) ◽  
pp. 199-218
Author(s):  
Sanjib Sengupta ◽  
Reshmi Deb

In this paper, a theoretical study is carried out on unsteady three dimensional, laminar, free convective flow of micropolar fluid with Hall effect, Joule heating and heat sink under gravitation modulation. A uniform transverse magnetic field is applied normal to the plate along the fluid region. The magnetic Reynolds number is considered to be small due to incomparability of applied and induced magnetic field, as such the influence of induced magnetic field can be neglected. The multi parameter perturbation technique is used to solve the governed dimensionless equations. The fluid velocity profile, temperature profile and the concentration profiles are discussed with the aid of graphs and tables. The coefficient of skin friction and couple stresses are numerically computed in addition to Nusselt number and Sherwood number. The result reveals that the linear velocity increases due to escalation in gravitation modulation parameter values but for intensification in values of gravitation modulation parameter, a reverse effect is observed for the rotational velocity. A comparative analysis shows that the skin friction coefficient is less in micropolar fluid than the corresponding Newtonian fluids.


2020 ◽  
Vol 16 (12) ◽  
pp. 155014772097927
Author(s):  
Cheonyong Kim ◽  
Joobum Kim ◽  
Jaiseung Kwak ◽  
Kiwook Kim ◽  
Woojin Seok

LoRa/LoRaWAN is growing rapidly as an underlying technology for the Internet of Things because of its long-range connectivity and low power. However, its limited scalability, owing to spread spectrum–based modulation and contention-based medium access control, impedes its use in emerging massive applications. In this study, we propose a downlink transmission scheme for enhancing the scalability of LoRa networks. The proposed scheme consists of two mechanisms. First, a modulation parameter is adjusted using the different transmission power limitations between the gateways and end devices to reduce downlink duration. Second, the timing of downlink traffic is selected based on uplink traffic concentration analysis. The proposed scheme reduces the uplink failure, and consequently, allows more end devices to participate in the network. The simulation results show that the proposed scheme is superior to the standard protocol in terms of the packet delivery ratio.


2020 ◽  
Vol 38 (3) ◽  
pp. 204-210
Author(s):  
V. S. Pawar ◽  
S. R. Kokare ◽  
S. D. Patil ◽  
M. V. Takale

AbstractIn this paper, self-focusing of finite Airy–Gaussian (AiG) laser beams in collisionless plasma has been investigated. The source of nonlinearity considered herein is relativistic. Based on the Wentzel–Kramers–Brillouin (WKB) and paraxial-ray approximations, the nonlinear coupled differential equations for beam-width parameters in transverse dimensions of AiG beams have been established. The effect of beam's modulation parameter and linear absorption coefficient on the self-focusing/defocusing of the beams is specifically considered. It is found that self-focusing/defocusing of finite AiG beams depends on the range of modulation parameter. The extent of self-focusing is found to decrease with increase in absorption.


Sign in / Sign up

Export Citation Format

Share Document