A FINITE-HORIZON OPTIMAL INVESTMENT AND CONSUMPTION PROBLEM USING REGIME-SWITCHING MODELS

2014 ◽  
Vol 17 (04) ◽  
pp. 1450027 ◽  
Author(s):  
R. H. LIU

This paper is concerned with a finite-horizon optimal investment and consumption problem in continuous-time regime-switching models. The market consists of one bond and n ≥ 1 correlated stocks. An investor distributes his/her wealth among these assets and consumes at a non-negative rate. The market parameters (the interest rate, the appreciation rates and the volatilities of the stocks) and the utility functions are assumed to depend on a continuous-time Markov chain with a finite number of states. The objective is to maximize the expected discounted total utility of consumption and the expected discounted utility from terminal wealth. We solve the optimization problem by applying the stochastic control methods to regime-switching models. Under suitable conditions, we prove a verification theorem. We then apply the verification theorem to a power utility function and obtain, up to the solution of a system of coupled ordinary differential equations, an explicit solution of the value function and the optimal investment and consumption policies. We illustrate the impact of regime-switching on the optimal investment and consumption policies with numerical results and compare the results with the classical Merton problem that has only a single regime.

2018 ◽  
Vol 21 (05) ◽  
pp. 1850032 ◽  
Author(s):  
C. YE ◽  
R. H. LIU ◽  
D. REN

This paper focuses on optimal asset allocation with stochastic interest rates in regime-switching models. A class of stochastic optimal control problems with Markovian regime-switching is formulated for which a verification theorem is provided. The theory is applied to solve two portfolio optimization problems (a portfolio of stock and savings account and a portfolio of mixed stock, bond and savings account) while a regime-switching Vasicek model is assumed for the interest rate. Closed-form solutions are obtained for a regime-switching power utility function. Numerical results are provided to illustrate the impact of regime-switching on the optimal investment decisions.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Huiling Wu

This paper studies an investment-consumption problem under inflation. The consumption price level, the prices of the available assets, and the coefficient of the power utility are assumed to be sensitive to the states of underlying economy modulated by a continuous-time Markovian chain. The definition of admissible strategies and the verification theory corresponding to this stochastic control problem are presented. The analytical expression of the optimal investment strategy is derived. The existence, boundedness, and feasibility of the optimal consumption are proven. Finally, we analyze in detail by mathematical and numerical analysis how the risk aversion, the correlation coefficient between the inflation and the stock price, the inflation parameters, and the coefficient of utility affect the optimal investment and consumption strategy.


Stats ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 1012-1026
Author(s):  
Sahar Albosaily ◽  
Serguei Pergamenchtchikov

We consider a spread financial market defined by the multidimensional Ornstein–Uhlenbeck (OU) process. We study the optimal consumption/investment problem for logarithmic utility functions using a stochastic dynamical programming method. We show a special verification theorem for this case. We find the solution to the Hamilton–Jacobi–Bellman (HJB) equation in explicit form and as a consequence we construct optimal financial strategies. Moreover, we study the constructed strategies with numerical simulations.


2017 ◽  
Vol 08 (08) ◽  
pp. 1005-1032 ◽  
Author(s):  
Bruno Rémillard ◽  
Alexandre Hocquard ◽  
Hugo Lamarre ◽  
Nicolas Papageorgiou

Sign in / Sign up

Export Citation Format

Share Document