scholarly journals FUNCTIONAL ANALYTIC (IR-)REGULARITY PROPERTIES OF SABR-TYPE PROCESSES

2017 ◽  
Vol 20 (03) ◽  
pp. 1750013 ◽  
Author(s):  
LEIF DÖRING ◽  
BLANKA HORVATH ◽  
JOSEF TEICHMANN

The stochastic alpha, beta, rho (SABR) model is a benchmark stochastic volatility model in interest rate markets, which has received much attention in the past decade. Its popularity arose from a tractable asymptotic expansion for implied volatility, derived by heat kernel methods. As markets moved to historically low rates, this expansion appeared to yield inconsistent prices. Since the model is deeply embedded in the markets, alternative pricing methods for SABR have been addressed in numerous approaches in recent years. All standard option pricing methods make certain regularity assumptions on the underlying model, but for SABR, these are rarely satisfied. We examine here regularity properties of the model from this perspective with a view to a number of (asymptotic and numerical) option pricing methods. In particular, we highlight delicate degeneracies of the SABR model (and related processes) at the origin, which deem the currently used popular heat kernel methods and all related methods from (sub-) Riemannian geometry ill-suited for SABR-type processes, when interest rates are near zero. We describe a more general semigroup framework, which permits to derive a suitable geometry for SABR-type processes (in certain parameter regimes) via symmetric Dirichlet forms. Furthermore, we derive regularity properties (Feller properties and strong continuity properties) necessary for the applicability of popular numerical schemes to SABR-semigroups and identify suitable Banach and Hilbert spaces for these. Finally, we comment on the short-time and large time asymptotic behavior of SABR-type processes beyond the heat-kernel framework.

2016 ◽  
Vol 19 (02) ◽  
pp. 1650014 ◽  
Author(s):  
INDRANIL SENGUPTA

In this paper, a class of generalized Barndorff-Nielsen and Shephard (BN–S) models is investigated from the viewpoint of derivative asset analysis. Incompleteness of this type of markets is studied in terms of equivalent martingale measures (EMM). Variance process is studied in details for the case of Inverse-Gaussian distribution. Various structure preserving subclasses of EMMs are derived. The model is then effectively used for pricing European style options and fitting implied volatility smiles.


Author(s):  
Kerry E. Back

Forward measures are defined. Forward and futures contracts are explained. The spot‐forward parity formula is derived. A forward price is a martingale under the forward measure. A futures price is a martingale under a risk neutral probability. Forward prices equal futures prices when interest rates are nonrandom. The expectations hypothesis is explained. The option pricing formulas of Margabe (exchange options), Black (options on forwards), and Merton (random interest rates) are derived. Implied volatilities and local volatility models are explained. Heston’s stochastic volatility model is derived.


1999 ◽  
Vol 02 (04) ◽  
pp. 409-440 ◽  
Author(s):  
GEORGE J. JIANG

This paper conducts a thorough and detailed investigation on the implications of stochastic volatility and random jump on option prices. Both stochastic volatility and jump-diffusion processes admit asymmetric and fat-tailed distribution of asset returns and thus have similar impact on option prices compared to the Black–Scholes model. While the dynamic properties of stochastic volatility model are shown to have more impact on long-term options, the random jump is shown to have relatively larger impact on short-term near-the-money options. The misspecification risk of stochastic volatility as jump is minimal in terms of option pricing errors only when both the level of kurtosis of the underlying asset return distribution and the level of volatility persistence are low. While both asymmetric volatility and asymmetric jump can induce distortion of option pricing errors, the skewness of jump offers better explanations to empirical findings on implied volatility curves.


2019 ◽  
Vol 4 (51) ◽  
pp. 18-39
Author(s):  
Kokoszczyński Ryszard ◽  
Sakowski Paweł ◽  
Ślepaczuk Robert

Abstract In this study, we analyse the performance of option pricing models using 5-minutes transactional data for the Japanese Nikkei 225 index options. We compare 6 different option pricing models: the Black (1976) model with different assumptions about the volatility process (realized volatility with and without smoothing, historical volatility and implied volatility), the stochastic volatility model of Heston (1993) and the GARCH(1,1) model. To assess the model performance, we use median absolute percentage error based on differences between theoretical and transactional options prices. We present our results with respect to 5 classes of option moneyness, 5 classes of option time to maturity and 2 option types (calls and puts). The Black model with implied volatility (BIV) comes as the best and the GARCH(1,1) as the worst one. For both call and put options, we observe the clear relation between average pricing errors and option moneyness: high error values for deep OTM options and the best fit for deep ITM options. Pricing errors also depend on time to maturity, although this relationship depend on option moneyness. For low value options (deep OTM and OTM), we obtained lower errors for longer maturities. On the other hand, for high value options (ITM and deep ITM) pricing errors are lower for short times to maturity. We obtained similar average pricing errors for call and put options. Moreover, we do not see any advantage of much complex and time-consuming models. Additionally, we describe liquidity of the Nikkei225 option pricing market and try to compare the results we obtain here with a detailed study for Polish emerging option market (Kokoszczyński et al. 2010b).


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Shican Liu ◽  
Yanli Zhou ◽  
Yonghong Wu ◽  
Xiangyu Ge

In financial markets, there exists long-observed feature of the implied volatility surface such as volatility smile and skew. Stochastic volatility models are commonly used to model this financial phenomenon more accurately compared with the conventional Black-Scholes pricing models. However, one factor stochastic volatility model is not good enough to capture the term structure phenomenon of volatility smirk. In our paper, we extend the Heston model to be a hybrid option pricing model driven by multiscale stochastic volatility and jump diffusion process. In our model the correlation effects have been taken into consideration. For the reason that the combination of multiscale volatility processes and jump diffusion process results in a high dimensional differential equation (PIDE), an efficient finite element method is proposed and the integral term arising from the jump term is absorbed to simplify the problem. The numerical results show an efficient explanation for volatility smirks when we incorporate jumps into both the stock process and the volatility process.


2020 ◽  
Vol 23 (03) ◽  
pp. 2050018
Author(s):  
OLESYA GRISHCHENKO ◽  
XIAO HAN ◽  
VICTOR NISTOR

We propose a new type of asymptotic expansion for the transition probability density function (or heat kernel) of certain parabolic partial differential equations (PDEs) that appear in option pricing. As other, related methods developed by Costanzino, Hagan, Gatheral, Lesniewski, Pascucci, and their collaborators, among others, our method is based on the computation of the truncated asymptotic expansion of the heat kernel with respect to a “small” parameter. What sets our method apart is that our small parameter is possibly different from the time to expiry and that the resulting commutator calculations go beyond the nilpotent Lie algebra case. In favorable situations, the terms of this asymptotic expansion can quickly be computed explicitly leading to a “closed-form” approximation of the solution, and hence of the option price. Our approximations tend to have much fewer terms than the ones obtained from short time asymptotics, and are thus easier to generalize. Another advantage is that the first term of our expansion corresponds to the classical Black-Scholes model. Our method also provides equally fast approximations of the derivatives of the solution, which is usually a challenge. A full theoretical justification of our method seems very difficult at this time, but we do provide some justification based on the results of (Siyan, Mazzucato, and Nistor, NWEJ 2018). We therefore mostly content ourselves to demonstrate numerically the efficiency of our method by applying it to the solution of the mean-reverting SABR stochastic volatility model PDE, commonly referred to as the [Formula: see text]SABR PDE, by taking the volatility of the volatility parameter [Formula: see text] (vol-of-vol) as a small parameter. For this PDE, we provide extensive numerical tests to gauge the performance of our method. In particular, we compare our approximation to the one obtained using Hagan’s formula and to the one obtained using a new, adaptive finite difference method. We provide an explicit asymptotic expansion for the implied volatility (generalizing Hagan’s formula), which is what is typically needed in concrete applications. We also calibrate our model to observed market option price data. The resulting values for the parameters [Formula: see text], [Formula: see text], and [Formula: see text] are realistic, which provides more evidence for the conjecture that the volatility is mean-reverting.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Ying Chang ◽  
Yiming Wang

We present option pricing under the double stochastic volatility model with stochastic interest rates and double exponential jumps with stochastic intensity in this article. We make two contributions based on the existing literature. First, we add double stochastic volatility to the option pricing model combining stochastic interest rates and jumps with stochastic intensity, and we are the first to fill this gap. Second, the stochastic interest rate process is presented in the Hull–White model. Some authors have concentrated on hybrid models based on various asset classes in recent years. Therefore, we build a multifactor model with the term structure of stochastic interest rates. We also approximated the pricing formula for European call options by applying the COS method and fast Fourier transform (FFT). Numerical results display that FFT and the COS method are much faster than the numerical integration approach used for obtaining the semi-closed form prices. The COS method shows higher accuracy, efficiency, and stability than FFT. Therefore, we use the COS method to investigate the impact of the parameters in the stochastic jump intensity process and the existence of the process on the call option prices. We also use it to examine the impact of the parameters in the interest rate process on the call option prices.


Author(s):  
Dan Pirjol ◽  
Lingjiong Zhu

Abstract We propose a novel time discretization for the log-normal SABR model which is a popular stochastic volatility model that is widely used in financial practice. Our time discretization is a variant of the Euler–Maruyama scheme. We study its asymptotic properties in the limit of a large number of time steps under a certain asymptotic regime which includes the case of finite maturity, small vol-of-vol and large initial volatility with fixed product of vol-of-vol and initial volatility. We derive an almost sure limit and a large deviations result for the log-asset price in the limit of a large number of time steps. We derive an exact representation of the implied volatility surface for arbitrary maturity and strike in this regime. Using this representation, we obtain analytical expansions of the implied volatility for small maturity and extreme strikes, which reproduce at leading order known asymptotic results for the continuous time model.


Sign in / Sign up

Export Citation Format

Share Document