scholarly journals Optimal Investment Strategy for Risky Assets

1998 ◽  
Vol 01 (03) ◽  
pp. 377-387 ◽  
Author(s):  
Sergei Maslov ◽  
Yi-Cheng Zhang

We design an optimal strategy for investment in a portfolio of assets subject to a multiplicative Brownian motion. The strategy provides the maximal typical long-term growth rate of investor's capital. We determine the optimal fraction of capital that an investor should keep in risky assets as well as weights of different assets in an optimal portfolio. In this approach both average return and volatility of an asset are relevant indicators determining its optimal weight. Our results are particularly relevant for very risky assets when traditional continuous-time Gaussian portfolio theories are no longer applicable.

2019 ◽  
Vol 22 (06) ◽  
pp. 1950029
Author(s):  
ZHIPING CHEN ◽  
LIYUAN WANG ◽  
PING CHEN ◽  
HAIXIANG YAO

Using mean–variance (MV) criterion, this paper investigates a continuous-time defined contribution (DC) pension fund investment problem. The framework is constructed under a Markovian regime-switching market consisting of one bank account and multiple risky assets. The prices of the risky assets are governed by geometric Brownian motion while the accumulative contribution evolves according to a Brownian motion with drift and their correlation is considered. The market state is modeled by a Markovian chain and the random regime-switching is assumed to be independent of the underlying Brownian motions. The incorporation of the stochastic accumulative contribution and the correlations between the contribution and the prices of risky assets makes our problem harder to tackle. Luckily, based on appropriate Riccati-type equations and using the techniques of Lagrange multiplier and stochastic linear quadratic control, we derive the explicit expressions of the optimal strategy and efficient frontier. Further, two special cases with no contribution and no regime-switching, respectively, are discussed and the corresponding results are consistent with those results of Zhou & Yin [(2003) Markowitz’s mean-variance portfolio selection with regime switching: A continuous-time model, SIAM Journal on Control and Optimization 42 (4), 1466–1482] and Zhou & Li [(2000) Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization 42 (1), 19–33]. Finally, some numerical analyses based on real data from the American market are provided to illustrate the property of the optimal strategy and the effects of model parameters on the efficient frontier, which sheds light on our theoretical results.


2000 ◽  
Vol 37 (4) ◽  
pp. 936-946 ◽  
Author(s):  
Griselda Deelstra ◽  
Martino Grasselli ◽  
Pierre-François Koehl

We study an optimal investment problem in a continuous-time framework where the interest rates follow Cox-Ingersoll-Ross dynamics. Closed form formulae for the optimal investment strategy are obtained by assuming the completeness of financial markets and the CRRA utility function. In particular, we study the behaviour of the solution when time approaches the terminal date.


Risks ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 17
Author(s):  
Leonie Violetta Brinker

Consider an insurance company whose surplus is modelled by an arithmetic Brownian motion of not necessarily positive drift. Additionally, the insurer has the possibility to invest in a stock modelled by a geometric Brownian motion independent of the surplus. Our key variable is the (absolute) drawdown Δ of the surplus X, defined as the distance to its running maximum X¯. Large, long-lasting drawdowns are unfavourable for the insurance company. We consider the stochastic optimisation problem of minimising the expected time that the drawdown is larger than a positive critical value (weighted by a discounting factor) under investment. A fixed-point argument is used to show that the value function is the unique solution to the Hamilton–Jacobi–Bellman equation related to the problem. It turns out that the optimal investment strategy is given by a piecewise monotone and continuously differentiable function of the current drawdown. Several numerical examples illustrate our findings.


2000 ◽  
Vol 37 (04) ◽  
pp. 936-946 ◽  
Author(s):  
Griselda Deelstra ◽  
Martino Grasselli ◽  
Pierre-François Koehl

We study an optimal investment problem in a continuous-time framework where the interest rates follow Cox-Ingersoll-Ross dynamics. Closed form formulae for the optimal investment strategy are obtained by assuming the completeness of financial markets and the CRRA utility function. In particular, we study the behaviour of the solution when time approaches the terminal date.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Huiling Wu

This paper studies an investment-consumption problem under inflation. The consumption price level, the prices of the available assets, and the coefficient of the power utility are assumed to be sensitive to the states of underlying economy modulated by a continuous-time Markovian chain. The definition of admissible strategies and the verification theory corresponding to this stochastic control problem are presented. The analytical expression of the optimal investment strategy is derived. The existence, boundedness, and feasibility of the optimal consumption are proven. Finally, we analyze in detail by mathematical and numerical analysis how the risk aversion, the correlation coefficient between the inflation and the stock price, the inflation parameters, and the coefficient of utility affect the optimal investment and consumption strategy.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1610
Author(s):  
Katia Colaneri ◽  
Alessandra Cretarola ◽  
Benedetta Salterini

In this paper, we study the optimal investment and reinsurance problem of an insurance company whose investment preferences are described via a forward dynamic exponential utility in a regime-switching market model. Financial and actuarial frameworks are dependent since stock prices and insurance claims vary according to a common factor given by a continuous time finite state Markov chain. We construct the value function and we prove that it is a forward dynamic utility. Then, we characterize the optimal investment strategy and the optimal proportional level of reinsurance. We also perform numerical experiments and provide sensitivity analyses with respect to some model parameters.


2012 ◽  
Vol 13 (2) ◽  
pp. 228-240 ◽  
Author(s):  
G. Bamberg ◽  
A. Neuhierl

Abstract The strategy to maximize the long-term growth rate of final wealth (maximum expected log strategy, maximum geometric mean strategy, Kelly criterion) is based on probability theoretic underpinnings and has asymptotic optimality properties. This article reviews the allocation of wealth in a two-asset economy with one risky asset and a risk-free asset. It is also shown that the optimal fraction to be invested in the risky asset (i) depends on the length of the basic return period and (ii) is lower for heavy-tailed log returns than for light-tailed log returns.


Sign in / Sign up

Export Citation Format

Share Document