scholarly journals COMPACTNESS OF A NONLINEAR EIGENVALUE PROBLEM WITH A SINGULAR NONLINEARITY

2008 ◽  
Vol 10 (01) ◽  
pp. 17-45 ◽  
Author(s):  
PIERPAOLO ESPOSITO

We study the Dirichlet boundary value problem [Formula: see text] on a bounded domain Ω ⊂ ℝN. For 2 ≤ N ≤ 7, we characterize compactness for solutions sequence in terms of spectral informations. As a by-product, we give an uniqueness result for λ close to 0 and λ* in the class of all solutions with finite Morse index, λ* being the extremal value associated to the nonlinear eigenvalue problem.

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ariel Salort

<p style='text-indent:20px;'>In this article we consider the following weighted nonlinear eigenvalue problem for the <inline-formula><tex-math id="M1">\begin{document}$ g- $\end{document}</tex-math></inline-formula>Laplacian</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ -{\text{ div}}\left( g(|\nabla u|)\frac{\nabla u}{|\nabla u|}\right) = \lambda w(x) h(|u|)\frac{u}{|u|} \quad \text{ in }\Omega\subset \mathbb R^n, n\geq 1 $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with Dirichlet boundary conditions. Here <inline-formula><tex-math id="M2">\begin{document}$ w $\end{document}</tex-math></inline-formula> is a suitable weight and <inline-formula><tex-math id="M3">\begin{document}$ g = G' $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ h = H' $\end{document}</tex-math></inline-formula> are appropriated Young functions satisfying the so called <inline-formula><tex-math id="M5">\begin{document}$ \Delta' $\end{document}</tex-math></inline-formula> condition, which includes for instance logarithmic perturbation of powers and different power behaviors near zero and infinity. We prove several properties on its spectrum, being our main goal to obtain lower bounds of eigenvalues in terms of <inline-formula><tex-math id="M6">\begin{document}$ G $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M7">\begin{document}$ H $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M8">\begin{document}$ w $\end{document}</tex-math></inline-formula> and the normalization <inline-formula><tex-math id="M9">\begin{document}$ \mu $\end{document}</tex-math></inline-formula> of the corresponding eigenfunctions.</p><p style='text-indent:20px;'>We introduce some new strategies to obtain results that generalize several inequalities from the literature of <inline-formula><tex-math id="M10">\begin{document}$ p- $\end{document}</tex-math></inline-formula>Laplacian type eigenvalues.</p>


2003 ◽  
Vol 10 (3) ◽  
pp. 495-502
Author(s):  
Alexander Domoshnitsky

Abstract In this paper, oscillation and asymptotic properties of solutions of the Dirichlet boundary value problem for hyperbolic and parabolic equations are considered. We demonstrate that introducing an arbitrary constant delay essentially changes the above properties. For instance, the delay equation does not inherit the classical properties of the Dirichlet boundary value problem for the heat equation: the maximum principle is not valid, unbounded solutions appear while all solutions of the classical Dirichlet problem tend to zero at infinity, for “narrow enough zones” all solutions oscillate instead of being positive. We establish that the Dirichlet problem for the wave equation with delay can possess unbounded solutions. We estimate zones of positivity of solutions for hyperbolic equations.


Author(s):  
Xinqun Mei

In this paper, we establish a global [Formula: see text] estimates for a Hessian type equation with homogeneous Dirichlet boundary. By the method of sub and sup solution, we get an existence and uniqueness result for the eigenvalue problem of a Hessian type operator.


Sign in / Sign up

Export Citation Format

Share Document