scholarly journals On the classification of Smale–Barden manifolds with Sasakian structures

Author(s):  
Vicente Muñoz ◽  
Aleksy Tralle

Smale–Barden manifolds [Formula: see text] are classified by their second homology [Formula: see text] and the Barden invariant [Formula: see text]. It is an important and difficult question to decide when [Formula: see text] admits a Sasakian structure in terms of these data. In this work, we show methods of doing this. In particular, we realize all [Formula: see text] with [Formula: see text] and [Formula: see text] provided that [Formula: see text], [Formula: see text], [Formula: see text] are pairwise coprime. We give a complete solution to the problem of the existence of Sasakian structures on rational homology spheres in the class of semi-regular Sasakian structures. Our method allows us to completely solve the following problem of Boyer and Galicki in the class of semi-regular Sasakian structures: determine which simply connected rational homology 5-spheres admit negative Sasakian structures.

2012 ◽  
Vol 21 (05) ◽  
pp. 1250042 ◽  
Author(s):  
DELPHINE MOUSSARD

In this paper, we give a classification of Alexander modules of null-homologous knots in rational homology spheres. We characterize these modules [Formula: see text] equipped with their Blanchfield forms ϕ, and the modules [Formula: see text] such that there is a unique isomorphism class of [Formula: see text], and we prove that for the other modules [Formula: see text], there are infinitely many such classes. We realize all these [Formula: see text] by explicit knots in ℚ-spheres.


2016 ◽  
Vol 28 (5) ◽  
pp. 943-965
Author(s):  
Charles P. Boyer ◽  
Leonardo Macarini ◽  
Otto van Koert

AbstractUsing ${S^{1}}$-equivariant symplectic homology, in particular its mean Euler characteristic, of the natural filling of links of Brieskorn–Pham polynomials, we prove the existence of infinitely many inequivalent contact structures on various manifolds, including in dimension 5 the k-fold connected sums of ${S^{2}\times S^{3}}$ and certain rational homology spheres. We then apply our result to show that on these manifolds the moduli space of classes of positive Sasakian structures has infinitely many components. We also apply our results to give lower bounds on the number of components of the moduli space of Sasaki–Einstein metrics on certain homotopy spheres. Finally, a new family of Sasaki–Einstein metrics of real dimension 20 on ${S^{5}}$ is exhibited.


2021 ◽  
Vol 13 (14) ◽  
pp. 7545
Author(s):  
Nikolai Bardarov ◽  
Vladislav Todorov ◽  
Nicole Christoff

The need to identify wood by its anatomical features requires a detailed analysis of all the elements that make it up. This is a significant problem of structural wood science, the most general and complete solution of which is yet to be sought. In recent years, increasing attention has been paid to the use of computer vision methods to automate processes such as the detection, identification, and classification of different tissues and different tree species. The more successful use of these methods in wood anatomy requires a more precise and comprehensive definition of the anatomical elements, according to their geometric and topological characteristics. In this article, we conduct a detailed analysis of the limits of variation of the location and grouping of vessels in the observed microscopic samples. The present development offers criteria and quantitative indicators for defining the terms shape, location, and group of wood tissues. It is proposed to differentiate the quantitative indicators of the vessels depending on their geometric and topological characteristics. Thus, with the help of computer vision technics, it will be possible to establish topological characteristics of wood vessels, the extraction of which would be used to develop an algorithm for the automatic classification of tree species.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Maurizio Parton ◽  
Paolo Piccinni

AbstractTheHermitian symmetric spaceM = EIII appears in the classification of complete simply connected Riemannian manifolds carrying a parallel even Clifford structure [19]. This means the existence of a real oriented Euclidean vector bundle E over it together with an algebra bundle morphism φ : Cl


2007 ◽  
Vol 142 (2) ◽  
pp. 259-268 ◽  
Author(s):  
YUYA KODA

AbstractLet K be a knot in a rational homology sphere M. In this paper we correlate the Alexander polynomial of K with a g-word cyclic presentation for the fundamental group of the strongly-cyclic covering of M branched over K. We also give a formula for the order of the first homology group of the strongly-cyclic branched covering.


2013 ◽  
pp. 874-895
Author(s):  
J. Blasco ◽  
N. Aleixos ◽  
S. Cubero ◽  
F. Albert ◽  
D. Lorente ◽  
...  

Nowadays, there is a growing demand for quality fruits and vegetables that are simple to prepare and consume, like minimally processed fruits. These products have to accomplish some particular characteristics to make them more attractive to the consumers, like a similar appearance and the total absence of external defects. Although recent advances in machine vision have allowed for the automatic inspection of fresh fruit and vegetables, there are no commercially available equipments for sorting of minority processed fruits, like arils of pomegranate (Punica granatum L) or segments of Satsuma mandarin (Citrus unshiu) ready to eat. This work describes a complete solution based on machine vision for the automatic inspection and classification of these fruits based on their estimated quality. The classification is based on morphological and colour features estimated from images taken in-line, and their analysis using statistical methods in order to grade the fruit into commercial categories.


2021 ◽  
pp. 331-352
Author(s):  
Patrick Orson ◽  
Mark Powell ◽  
Arunima Ray

Surgery theory and the classification of simply connected 4-manifolds comprise two key consequences of the disc embedding theorem. The chapter begins with an introduction to surgery theory from the perspective of 4-manifolds. In particular, the terms and maps in the surgery sequence are defined, and an explanation is given as to how the sphere embedding theorem, with the added ingredient of topological transversality, can be used to define the maps in the surgery sequence and show that it is exact. The surgery sequence is applied to classify simply connected closed 4-manifolds up to homeomorphism. The chapter closes with a survey of related classification results.


Sign in / Sign up

Export Citation Format

Share Document