Fault-Tolerant Routing in Wormhole Meshes

2003 ◽  
Vol 04 (04) ◽  
pp. 463-495 ◽  
Author(s):  
Ming-Jer Tsai

In wormhole meshes, many a routing algorithm prevents a deadlock by enclosing unlimited number of faulty nodes with faulty blocks and dividing a physical interconnection network into a fixed number of virtual ones; none of them, however, is able to tolerate two faulty blocks with a distance of two, no less, in at least one dimension by use of only two virtual interconnection networks. To fill this gap, an adaptive and fault-tolerant routing algorithm is proposed. The algorithm is fully-adaptive until encountering a faulty block. It then detours the blocked message around the faulty block. Arranging the detours around faulty blocks attempts to prevent a deadlock. The proposed method has no need for global information.

1998 ◽  
Vol 09 (01) ◽  
pp. 25-37 ◽  
Author(s):  
THOMAS J. CORTINA ◽  
ZHIWEI XU

We present a family of interconnection networks named the Cube-Of-Rings (COR) networks along with their basic graph-theoretic properties. Aspects of group graph theory are used to show the COR networks are symmetric and optimally fault tolerant. We present a closed-form expression of the diameter and optimal one-to-one routing algorithm for any member of the COR family. We also discuss the suitability of the COR networks as the interconnection network of scalable parallel computers.


2005 ◽  
Vol 06 (04) ◽  
pp. 361-382 ◽  
Author(s):  
K. V. Arya ◽  
R. K. Ghosh

This paper proposes a technique to modify a Multistage Interconnection Network (MIN) to augment it with fault tolerant capabilities. The augmented MIN is referred to as Enhanced MIN (E-MIN). The technique employed for construction of E-MIN is compared with the two known physical fault tolerance techniques, namely, extra staging and chaining. EMINs are found to be more generic than extra staged networks and less expensive than chained networks. The EMIN realizes all the permutations realizable by the original MIN. The routing strategies under faulty and fault free conditions are shown to be very simple in the case of E-MINs.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Mostafa Abd-El-Barr ◽  
Turki F. Al-Somani

Hierarchical interconnection networks (HINs) provide a framework for designing networks with reduced link cost by taking advantage of the locality of communication that exists in parallel applications. HINs employ multiple levels. Lower-level networks provide local communication while higher-level networks facilitate remote communication. HINs provide fault tolerance in the presence of some faulty nodes and/or links. Existing HINs can be broadly classified into two classes. those that use nodes and/or links replication and those that use standby interface nodes. The first class includes Hierarchical Cubic Networks, Hierarchical Completely Connected Networks, and Triple-based Hierarchical Interconnection Networks. The second HINs class includes Modular Fault-Tolerant Hypercube Networks and Hierarchical Fault-Tolerant Interconnection Network. This paper presents a review and comparison of the topological properties of both classes of HINs. The topological properties considered are network degree, diameter, cost and packing density. The outcome of this study show among all HINs two networks that is, the Root-Folded Heawood (RFH) and the Flooded Heawood (FloH), belonging to the first HIN class provide the best network cost, defined as the product of network diameter and degree. The study also shows that HFCube(n,n)provide the best packing density, that is, the smallest chip area required for VLSI implementation.


2000 ◽  
Vol 01 (04) ◽  
pp. 315-329 ◽  
Author(s):  
PETER KOK KEONG LOH ◽  
WEN JING HSU

Hierarchical interconnection networks with n-dimensional hypercube clusters can strike a balance between wide application suitability, size scalability as well as reliability. Cluster communications support for such networks must therefore be reliable and efficient without incurring large overheads. This paper proposes a reliable and cost-effective intra-cluster communications strategy for such a class of interconnection networks. The routing algorithm can tolerate up to (n - 1) component faults in the cluster and generates routes that are cycle-free and livelock-free. The message is guaranteed to be optimally (respectively, sub-optimally) delivered within a maximum of n (respectively, 2n - 1) hops. The message overhead incurred is one of the lowest reported for the specified fault tolerance level – with only a single n-bit routing vector accompanying the message to be communicated. Finally, routing hardware support may be simply achieved with standard components, facilitating integration with the host network.


Author(s):  
Abderezak Touzene ◽  
Khaled Day

We obtain the conditional fault-diameter of the square torus interconnection network under the condition of forbidden faulty sets (i.e. assuming that each non-faulty processor has at least one non-faulty neighbor). We show that under this condition, the square torus, whose connectivity is 4, can tolerate up to 5 faulty nodes without becoming disconnected. The conditional node connectivity is, therefore, 6. We also show that the conditional fault-diameter of the square torus is equal to the fault-free diameter plus two. With this result the torus joins a group of interconnection networks (including the hypercube and the star-graph) whose conditional fault-diameter has been shown to be only two units over the fault-free diameter. Two fault-tolerant routing algorithms are discussed based on the proposed vertex disjoint paths construction.  


2019 ◽  
Vol 30 (08) ◽  
pp. 1301-1315 ◽  
Author(s):  
Liqiong Xu ◽  
Shuming Zhou ◽  
Weihua Yang

An interconnection network is usually modeled as a graph, in which vertices and edges correspond to processors and communication links, respectively. Connectivity is an important metric for fault tolerance of interconnection networks. A graph [Formula: see text] is said to be maximally local-connected if each pair of vertices [Formula: see text] and [Formula: see text] are connected by [Formula: see text] vertex-disjoint paths. In this paper, we show that Cayley graphs generated by [Formula: see text]([Formula: see text]) transpositions are [Formula: see text]-fault-tolerant maximally local-connected and are also [Formula: see text]-fault-tolerant one-to-many maximally local-connected if their corresponding transposition generating graphs have a triangle, [Formula: see text]-fault-tolerant one-to-many maximally local-connected if their corresponding transposition generating graphs have no triangles. Furthermore, under the restricted condition that each vertex has at least two fault-free adjacent vertices, Cayley graphs generated by [Formula: see text]([Formula: see text]) transpositions are [Formula: see text]-fault-tolerant maximally local-connected if their corresponding transposition generating graphs have no triangles.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Ved Prakash Bhardwaj ◽  
Nitin

Interconnection Network (IN) is a key element for all parallel processing applications. Multistage Interconnection Network (MIN) is an efficient IN for these applications, as it has the quality of excellent performance at low cost with high reliability. MINs are effective medium for message broadcasting. Doing the same task in faulty situations is a critical challenge. In this paper, we have presented a new Fault Tolerant Interconnection Network named as Irregular Advance Omega Network (IAON); also we have presented its routing algorithm. IAON is the modified form of Advance Omega Network. The proposed MIN can endure multiple faults and provides a suitable path between every source to every destination. We have examined the fault tolerance capacity of IAON and compared its performance with other existing MINs. In order to check the performance of proposed MIN, message broadcasting was performed in three conditions as follows: (1) when network was fault free; (2) when network was Single Switch Faulty in every stage; (3) when network was Double Switch Faulty in every stage. Results showed that IAON performed better than the earlier proposed MINs.


Sign in / Sign up

Export Citation Format

Share Document