Vibration Analysis of Complete Conical Shells with Variable Thickness

2014 ◽  
Vol 14 (04) ◽  
pp. 1450001 ◽  
Author(s):  
Jae-Hoon Kang

A three-dimensional (3D) method of analysis is presented for determining the free vibration frequencies of complete (not truncated) conical shells with linearly varying thickness. The complete conical shells free or clamped at the bottom edge with a free vertex are investigated. Unlike conventional shell theories, which are mathematically 2D, the present method is based upon the 3D dynamic equations of elasticity. Displacement components ur, uθ and uz in the radial, circumferential and axial directions, respectively, are taken to be periodic in θ and in time, and expressed by algebraic polynomials in the r- and z-directions. Potential (strain) and kinetic energies of the complete conical shell are formulated. The Ritz method is used to solve the eigenvalue problem, yielding the upper bound values of the frequencies by minimization. As the degree of the polynomials is increased, frequencies converge to the exact values, with four-digit exactitude demonstrated for the first five frequencies. The frequencies from the present 3D method are compared with those from other 3D approaches and 2D shell theory by previous researchers.

2004 ◽  
Vol 71 (4) ◽  
pp. 502-507 ◽  
Author(s):  
Jae-Hoon Kang ◽  
Arthur W. Leissa

A three-dimensional (3D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, complete (not truncated) conical shells of revolution. Unlike conventional shell theories, which are mathematically two-dimensional (2D), the present method is based upon the 3D dynamic equations of elasticity. Displacement components ur,uz, and uθ in the radial, axial, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in θ, and algebraic polynomials in the r and z-directions. Potential (strain) and kinetic energies of the conical shells are formulated, the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated for the first five frequencies of the conical shells. Novel numerical results are presented for thick, complete conical shells of revolution based upon the 3D theory. Comparisons are also made between the frequencies from the present 3D Ritz method and a 2D thin shell theory.


2017 ◽  
Vol 17 (02) ◽  
pp. 1750016 ◽  
Author(s):  
Jae-Hoon Kang

A three-dimensional (3D) method of analysis is presented for determining the natural frequencies of shallow spherical domes with non-uniform thickness. Unlike conventional shell theories, which are mathematically two dimensional (2D), the present method is based upon the 3D dynamic equations of elasticity. Displacement components [Formula: see text], [Formula: see text], and [Formula: see text] in the meridional, circumferential, and normal directions, respectively, are taken to be periodic in [Formula: see text] and in time, and algebraic polynomials in the [Formula: see text] and z directions. Potential (strain) and kinetic energies of the shallow spherical domes with non-uniform thickness are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated for the first five frequencies. Natural frequencies are presented for different boundary conditions. The frequencies from the present 3D method are compared with those from a 2D exact method, a 2D thick shell theory, and a 3D finite element method by previous researchers.


2017 ◽  
Vol 17 (03) ◽  
pp. 1750040
Author(s):  
Jae-Hoon Kang

A three-dimensional (3D) method of analysis is presented for determining the free vibration frequencies of a hermetic capsule comprising a cylinder closed with hemi-ellipsoidal caps at both ends. Unlike conventional shell theories, which are mathematically 2D, the present method is based upon the 3D dynamic equations of elasticity. Displacement components [Formula: see text], [Formula: see text], and [Formula: see text] in the radial, circumferential, and axial directions, respectively, are taken to be periodic in [Formula: see text] and in time, and the Legendre polynomials in the r and z directions instead of ordinary ones. Potential (strain) and kinetic energies of the hermetic capsule are formulated, and the Ritz method is used to solve the eigenvalue problem, thereby yielding upper bound values of the frequencies. As the degree of the Legendre polynomials is increased, frequencies converge to the exact values. Typical convergence studies are carried out for the first five frequencies. The frequencies from the present 3D method are in good agreement with those obtained from other 3D approach and 2D shell theories proposed by previous researchers.


2004 ◽  
Vol 10 (2) ◽  
pp. 199-214 ◽  
Author(s):  
Jae-Hoon Kang ◽  
Arthur W Leissa

A three-dimensional (3D) method of analysis is presented for determining the free vibration frequencies and mode shapes of solid and hollow hemispherical shells of revolution of arbitrary wall thickness having arbitrary constraints on their boundaries. Unlike conventional shell theories, which are mathematically two-dimensional, the present method is based upon the 3D dynamic equations of elasticity. Displacement components u \#966;, u z, and u \#952; in the meridional, normal, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in \#952;, and algebraic polynomials in the \#966;-direction and zdirection. Potential (strain) and kinetic energies of the hemispherical shells are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies obtained by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Novel numerical results are presented for solid and hollow hemispheres with linear thickness variation. The effect on frequencies of a small axial conical hole is also discussed. Comparisons are made for the frequencies of completely free, thick hemispherical shells with uniform thickness from the present 3D Ritz solutions and other 3D finite element ones.


2013 ◽  
Vol 14 (01) ◽  
pp. 1350023 ◽  
Author(s):  
JAE-HOON KANG

A three-dimensional (3D) method of analysis is presented for determining the free vibration frequencies of joined hemispherical–cylindrical shells of revolution with a top opening. Unlike conventional shell theories, which are mathematically two-dimensional (2D), the present method is based upon the 3D dynamic equations of elasticity. Displacement components ur, uθ and uz in the radial, circumferential, and axial directions, respectively, are taken to be periodic in θ and in time, and algebraic polynomials in the r and z directions. Potential (strain) and kinetic energies of the joined shells are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated for the first five frequencies. Natural frequencies are presented for different boundary conditions. The frequencies from the present 3D method are compared with those from 2D thin shell theories.


2013 ◽  
Vol 81 (1) ◽  
Author(s):  
Jae-Hoon Kang

A three-dimensional (3D) method of analysis is presented for determining the free vibration frequencies of clamped, complete (not truncated) conical shells of revolution in which the bottom edges are normal to the midsurface of the shells based upon the circular cylindrical coordinate system using the Ritz method. A convergence study is presented. The frequencies from the present 3D analysis are compared with those from other 3D methods and 2D thin shell theory.


1987 ◽  
Vol 54 (1) ◽  
pp. 115-120 ◽  
Author(s):  
T. Irie ◽  
G. Yamada ◽  
Y. Tagawa

An analysis is presented for the three-dimensional vibration problem of determining the natural frequencies and the mode shapes of a truncated quadrangular pyramid. For this purpose, the body is transformed into a right quadrangular prism with unit edge lengths by a transformation of variables. With the displacements of the transformed prism assumed in the forms of algebraic polynomials, the dynamical energies of the prism are evaluated, and the frequency equation is derived by the Ritz method. This method is applied to quadrangular pyramids in which the base is clamped and the other sides are free, and the natural frequencies (the eigenvalues of vibration) and the mode shapes are calculated numerically, from which the vibration characteristics arising in the pyramids are studied.


2005 ◽  
Vol 72 (5) ◽  
pp. 797-800 ◽  
Author(s):  
Jae-Hoon Kang ◽  
Arthur W. Leissa

A three-dimensional (3D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, complete (not truncated) conical shells of revolution in which the bottom edges are normal to the midsurface of the shells based upon the circular cylindrical coordinate system using the Ritz method. Comparisons are made between the frequencies and the corresponding mode shapes of the conical shells from the authors' former analysis with bottom edges parallel to the axial direction and the present analysis with the edges normal to shell midsurfaces.


2005 ◽  
Vol 05 (03) ◽  
pp. 387-408 ◽  
Author(s):  
N. BHARDWAJ ◽  
A. P. GUPTA

This paper is concerned with the axisymmetric vibration problem of polar orthotropic circular plates of quadratically varying thickness and resting on an elastic foundation. The problem is solved by using the Rayleigh–Ritz method with boundary characteristic orthonormal polynomials for approximating the deflection function. Numerical results are computed for frequencies, nodal radii and mode shapes. Three-dimensional graphs are also plotted for the first four normal modes of axisymmetric vibration of plates with free, simply-supported and clamped edge conditions for various values of taper, orthotropy and foundation parameters.


Sign in / Sign up

Export Citation Format

Share Document