Three-Dimensional Vibration Analysis of a Truncated Quadrangular Pyramid

1987 ◽  
Vol 54 (1) ◽  
pp. 115-120 ◽  
Author(s):  
T. Irie ◽  
G. Yamada ◽  
Y. Tagawa

An analysis is presented for the three-dimensional vibration problem of determining the natural frequencies and the mode shapes of a truncated quadrangular pyramid. For this purpose, the body is transformed into a right quadrangular prism with unit edge lengths by a transformation of variables. With the displacements of the transformed prism assumed in the forms of algebraic polynomials, the dynamical energies of the prism are evaluated, and the frequency equation is derived by the Ritz method. This method is applied to quadrangular pyramids in which the base is clamped and the other sides are free, and the natural frequencies (the eigenvalues of vibration) and the mode shapes are calculated numerically, from which the vibration characteristics arising in the pyramids are studied.

2004 ◽  
Vol 10 (2) ◽  
pp. 199-214 ◽  
Author(s):  
Jae-Hoon Kang ◽  
Arthur W Leissa

A three-dimensional (3D) method of analysis is presented for determining the free vibration frequencies and mode shapes of solid and hollow hemispherical shells of revolution of arbitrary wall thickness having arbitrary constraints on their boundaries. Unlike conventional shell theories, which are mathematically two-dimensional, the present method is based upon the 3D dynamic equations of elasticity. Displacement components u \#966;, u z, and u \#952; in the meridional, normal, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in \#952;, and algebraic polynomials in the \#966;-direction and zdirection. Potential (strain) and kinetic energies of the hemispherical shells are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies obtained by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Novel numerical results are presented for solid and hollow hemispheres with linear thickness variation. The effect on frequencies of a small axial conical hole is also discussed. Comparisons are made for the frequencies of completely free, thick hemispherical shells with uniform thickness from the present 3D Ritz solutions and other 3D finite element ones.


2017 ◽  
Vol 17 (02) ◽  
pp. 1750016 ◽  
Author(s):  
Jae-Hoon Kang

A three-dimensional (3D) method of analysis is presented for determining the natural frequencies of shallow spherical domes with non-uniform thickness. Unlike conventional shell theories, which are mathematically two dimensional (2D), the present method is based upon the 3D dynamic equations of elasticity. Displacement components [Formula: see text], [Formula: see text], and [Formula: see text] in the meridional, circumferential, and normal directions, respectively, are taken to be periodic in [Formula: see text] and in time, and algebraic polynomials in the [Formula: see text] and z directions. Potential (strain) and kinetic energies of the shallow spherical domes with non-uniform thickness are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated for the first five frequencies. Natural frequencies are presented for different boundary conditions. The frequencies from the present 3D method are compared with those from a 2D exact method, a 2D thick shell theory, and a 3D finite element method by previous researchers.


2004 ◽  
Vol 71 (4) ◽  
pp. 502-507 ◽  
Author(s):  
Jae-Hoon Kang ◽  
Arthur W. Leissa

A three-dimensional (3D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, complete (not truncated) conical shells of revolution. Unlike conventional shell theories, which are mathematically two-dimensional (2D), the present method is based upon the 3D dynamic equations of elasticity. Displacement components ur,uz, and uθ in the radial, axial, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in θ, and algebraic polynomials in the r and z-directions. Potential (strain) and kinetic energies of the conical shells are formulated, the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated for the first five frequencies of the conical shells. Novel numerical results are presented for thick, complete conical shells of revolution based upon the 3D theory. Comparisons are also made between the frequencies from the present 3D Ritz method and a 2D thin shell theory.


2019 ◽  
Vol 19 (02) ◽  
pp. 1950005 ◽  
Author(s):  
Jae-Hoon Kang

A three-dimensional (3D) method of analysis is presented for determining the natural frequencies and the mode shapes of combined hemispherical–cylindrical shells of revolution with and without a top opening by the Ritz method. Instead of mathematically two-dimensional (2D) conventional thin shell theories or higher-order thick shell theories, the present method is based upon the 3D dynamic equations of elasticity. Mathematically, minimal or orthonormal Legendre polynomials are used as admissible functions in place of ordinary simple algebraic polynomials which are usually applied in the Ritz method. The analysis is based upon the circular cylindrical coordinates instead of the shell coordinates which are normal and tangent to the shell mid-surface. Strain and kinetic energies of the combined shell of revolution with and without a top opening are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the Legendre polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated for the first five frequencies. Numerical results are presented for the combined shells of revolution with or without a top opening, which are completely free and fixed at the bottom of the combined shells. The frequencies from the present 3D Ritz method are compared with those from 2D thin shell theories by previous researchers. The present analysis is applicable to very thick shells as well as very thin shells.


2007 ◽  
Vol 334-335 ◽  
pp. 85-88
Author(s):  
Daisuke Narita ◽  
Yoshihiro Narita

Despite a large number of technical papers on vibration of composite shallow shells, all the previous papers have dealt with shallow shells with uniform curvature to avoid difficulty in the analysis. Recent composite products, however, require various surface designs of thin panels from the viewpoint of industrial design, for example, in the fender and door panel designs of commercial vehicles. The present study proposes an analytical method to deal with vibration of shallow shells with non-uniform curvature. An interpolating function is introduced to represent the required surface shape and the corresponding curvature is derived as a function of the position (x,y). The obtained curvature is substituted into the total potential energy of the shell, and the procedure is shown to derive a frequency equation in the Ritz method. Numerical examples clarifies the effects of non- uniform curvature on the natural frequencies and mode shapes.


2013 ◽  
Vol 14 (01) ◽  
pp. 1350023 ◽  
Author(s):  
JAE-HOON KANG

A three-dimensional (3D) method of analysis is presented for determining the free vibration frequencies of joined hemispherical–cylindrical shells of revolution with a top opening. Unlike conventional shell theories, which are mathematically two-dimensional (2D), the present method is based upon the 3D dynamic equations of elasticity. Displacement components ur, uθ and uz in the radial, circumferential, and axial directions, respectively, are taken to be periodic in θ and in time, and algebraic polynomials in the r and z directions. Potential (strain) and kinetic energies of the joined shells are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated for the first five frequencies. Natural frequencies are presented for different boundary conditions. The frequencies from the present 3D method are compared with those from 2D thin shell theories.


2018 ◽  
Vol 1 (2) ◽  
pp. 30-34
Author(s):  
Sinniah Ilanko ◽  
Yusuke Mochida ◽  
Julian De Los Rois

The natural frequencies of a cracked plate with a roving mass were computed using the Rayleigh-Ritz Method for various sets of boundary condition. The obtained frequencies exhibit a sudden shift as a roving body crosses a crack. If the crack is only partial and continuity of translation is maintained, then the frequency shift occurs only when the body possesses a rotary inertia. If the crack is a complete one (through thickness) which permits differential translation to occur on either side of the crack, a particle having mass only (translatory inertia) is sufficient to cause a sudden shift. There is no need for a rotary inertia. This is potentially useful in detecting cracks in structures, as it is possible to track the changes in the natural frequencies of a structure as a test body such as a vehicle on a bridge moves and identify points where sudden frequency changes occur.


2019 ◽  
Vol 24 (3) ◽  
pp. 451-457
Author(s):  
Yeong-Bin Yang ◽  
Jae-Hoon Kang

Natural frequencies and mode shapes are obtained for a sinusoidal-shaped shell of revolution by using the Ritz method from a three-dimensional (3-D) analysis instead of a mathematically two-dimensional (2-D) thin shell theory or high order thick shell theory. The present analysis uses circular cylindrical coordinates instead of 3-D shell coordinates, which have been used in traditional shell analyses. Convergence studies can analyze the first five frequencies to four-digit exactitude. Results are given for a variety of shallow and deep sinusoidal-shaped shells with different boundary conditions. The sinusoidal-shaped shells are very similar to paraboloidal shells in shape. The frequencies of the sinusoidal-shaped shells from the present 3-D method are compared with those from 2-D thin shell theories for paraboloidal shells. The present 3-D method is applicable to very thick as well as thin shells.


Author(s):  
Ankit ◽  
N. Datta

A compliant tower (CT) is modeled as a partially dry, partially tapered, damped Timoshenko beam with the superstructure modeled as an eccentric tip mass, and a non-classical damped boundary at the base. The foundation is modeled as a combination of a linear spring and a torsional spring, along with linear and torsional dampers. The mean empty space factor due to the truss type structure of the tower is included. The effect of shear deformation and rotary inertia are included in the vibration analysis; with the non-uniform beam mode-shapes being a weighted sum of the uniform beam mode-shapes. The weights are evaluated by the Rayleigh-Ritz method, using the first ten modes and verified using Finite Element Method (FEM). The superstructure adds to the kinetic energy without affecting the stiffness of the beam, thereby reducing the natural frequencies. The weight of the superstructure acts as an axial compressive load on the beam, reducing its frequencies further. Kelvin-Voigt model of structural damping is included. A part of the structure being underwater, the virtual added inertia is included to calculate the wet natural frequencies. The CT is first subjected to steady current loads of a given velocity profile. The static deflection and overturning moment is estimated for current loads. The CT is then studied for wave excitation at various seas states. Morrison’s equation and Pierson-Moskowitz Spectrum are used to derive the forces for different sea states. The forced vibration analysis of the structure is done via Rayleigh-Ritz method and verified using FEM. The maximum horizontal deflection and shear stress of the base of the superstructure, and the normal/shear stresses at the foundation are analyzed. Finally, the CT is subjected to earthquake excitation, modeled as an arbitrary horizontal impact excitation at the base. The above forced vibration analysis is repeated.


2019 ◽  
Vol 24 (2) ◽  
pp. 451-457
Author(s):  
Yeong-Bin Yang ◽  
Jae-Hoon Kang

Natural frequencies and mode shapes are obtained for a sinusoidal-shaped shell of revolution by using the Ritz method from a three-dimensional (3-D) analysis instead of a mathematically two-dimensional (2-D) thin shell theory or high order thick shell theory. The present analysis uses circular cylindrical coordinates instead of 3-D shell coordinates, which have been used in traditional shell analyses. Convergence studies can analyze the first five frequencies to four-digit exactitude. Results are given for a variety of shallow and deep sinusoidal-shaped shells with different boundary conditions. The sinusoidal-shaped shells are very similar to paraboloidal shells in shape. The frequencies of the sinusoidal-shaped shells from the present 3-D method are compared with those from 2-D thin shell theories for paraboloidal shells. The present 3-D method is applicable to very thick as well as thin shells.


Sign in / Sign up

Export Citation Format

Share Document