Tensile Buckling in Shear Deformable Rods

2017 ◽  
Vol 17 (06) ◽  
pp. 1750063 ◽  
Author(s):  
Dario Genovese

In the framework of the Reissner–Simo rod theory and following Haringx’ approach for studying axial buckling in shear deformable rods, we give a mechanical interpretation of tensile instability, together with its mathematical justification, and we perform a linearized eigenvalue buckling analysis for tense planar rods. Buckled shapes and critical loads are calculated for most usual boundary conditions.

2019 ◽  
Vol 6 (1) ◽  
pp. 68-76 ◽  
Author(s):  
Subrat Kumar Jena ◽  
S. Chakraverty

AbstractIn this paper, two computationally efficient techniques viz. Differential Quadrature Method (DQM) and Differential Transformation Method (DTM) have been used for buckling analysis of Euler-Bernoulli nanobeam incorporation with the nonlocal theory of Eringen. Complete procedures of both the methods along with their mathematical formulations are discussed, and MATLAB codes have been developed for both the methods to handle the boundary conditions. Various classical boundary conditions such as SS, CS, and CC have been considered for investigation. A comparative study for the convergence of DQM and DTM approaches are carried out, and the obtained results are also illustrated to demonstrate the effects of the nonlocal parameter, aspect ratio (L/h) and the boundary condition on the critical buckling load parameter.


2015 ◽  
Vol 26 (01) ◽  
pp. 59-110 ◽  
Author(s):  
Claude Bardos ◽  
Denis Grebenkov ◽  
Anna Rozanova-Pierrat

We consider a heat problem with discontinuous diffusion coefficients and discontinuous transmission boundary conditions with a resistance coefficient. For all bounded (ϵ, δ)-domains Ω ⊂ ℝn with a d-set boundary (for instance, a self-similar fractal), we find the first term of the small-time asymptotic expansion of the heat content in the complement of Ω, and also the second-order term in the case of a regular boundary. The asymptotic expansion is different for the cases of finite and infinite resistance of the boundary. The derived formulas relate the heat content to the volume of the interior Minkowski sausage and present a mathematical justification to the de Gennes' approach. The accuracy of the analytical results is illustrated by solving the heat problem on prefractal domains by a finite elements method.


2014 ◽  
Vol 136 (5) ◽  
Author(s):  
R. D. Firouz-Abadi ◽  
M. Rahmanian ◽  
M. Amabili

The present study considers the free vibration analysis of moderately thick conical shells based on the Novozhilov theory. The higher order governing equations of motion and the associate boundary conditions are obtained for the first time. Using the Frobenius method, exact base solutions are obtained in the form of power series via general recursive relations which can be applied for any arbitrary boundary conditions. The obtained results are compared with the literature and very good agreement (up to 4%) is achieved. A comprehensive parametric study is performed to provide an insight into the variation of the natural frequencies with respect to thickness, semivertex angle, circumferential wave numbers for clamped (C), and simply supported (SS) boundary conditions.


2015 ◽  
Vol 07 (05) ◽  
pp. 1550076 ◽  
Author(s):  
Reza Ansari ◽  
Mostafa Faghih Shojaei ◽  
Vahid Mohammadi ◽  
Raheb Gholami ◽  
Mohammad Ali Darabi

In this paper, a geometrically nonlinear first-order shear deformable nanoplate model is developed to investigate the size-dependent geometrically nonlinear free vibrations of rectangular nanoplates considering surface stress effects. For this purpose, according to the Gurtin–Murdoch elasticity theory and Hamilton's principle, the governing equations of motion and associated boundary conditions of nanoplates are derived first. Afterwards, the set of obtained nonlinear equations is discretized using the generalized differential quadrature (GDQ) method and then solved by a numerical Galerkin scheme and pseudo arc-length continuation method. Finally, the effects of important model parameters including surface elastic modulus, residual surface stress, surface density, thickness and boundary conditions on the vibration characteristics of rectangular nanoplates are thoroughly investigated. It is found that with the increase of the thickness, nanoplates can experience different vibrational behavior depending on the type of boundary conditions.


Author(s):  
A Naderi ◽  
A R Saidi

In this study, an analytical solution for the buckling of a functionally graded annular sector plate resting on an elastic foundation is presented. The buckling analysis of the functionally graded annular sector plate is investigated for two typical, Winkler and Pasternak, elastic foundations. The equilibrium and stability equations are derived according to the Kirchhoff's plate theory using the energy method. In order to decouple the highly coupled stability equations, two new functions are introduced. The decoupled equations are solved analytically for a plate having simply supported boundary conditions on two radial edges. Satisfying the boundary conditions on the circular edges of the plate yields an eigenvalue problem for finding the critical buckling load. Extensive results pertaining to critical buckling load are presented and the effects of boundary conditions, volume fraction, annularity, plate thickness, and elastic foundation are studied.


Sign in / Sign up

Export Citation Format

Share Document