Analysis for Dynamic Response of Buried Steel Pipeline in Cross-Anisotropic Layered Soils

2020 ◽  
Vol 20 (07) ◽  
pp. 2071006
Author(s):  
Jin Zhang ◽  
Zejun Han ◽  
Hongyuan Fang ◽  
Linqing Yang

The interaction between underground pipelines and soils is crucial to the design and maintenance of underground pipeline network systems. In this paper, the dynamic stiffness matrix in the frequency-domain of the buried pipeline is obtained by the improved scaled boundary finite element method (SBFEM) coupled with the finite element method (FEM) at the interface between the far and near fields. A new coordinate transformation together with a scaled line is introduced in the improved SBFEM. Combined with the mixed variable algorithm, the time-domain solution of the buried pipeline under dynamic loads is then obtained. The accuracy of the proposed algorithm was verified by numerical examples. A parametric study is performed to assess the influence of the anisotropic characteristics of the layered soils on the dynamic response of the pipeline, the result of which provides a reliable basis for engineering practice. The results show that these parameters have a significant impact on the pipeline. The understanding of this impact can contribute to the design, construction, and maintenance of the corresponding engineering projects.

2011 ◽  
Vol 378-379 ◽  
pp. 213-217
Author(s):  
Shang Ming Li

The scaled boundary finite element method (SBFEM) was extended to solve dam-reservoir interaction problems in the time domain and a dynamic stiffness used in the SBFEM of semi-infinite reservoir in the time domain was proposed, which was evaluated by the Bessel function. Based on the dynamic stiffness, transient responses subjected to horizontal ground motions were analyzed through coupling the SBFEM and finite element method (FEM). A dam was modeled by FEM, while the whole fluid in reservoir was modeled by the SBFEM alone or a combination of FEM and SBFEM. Two benchmark examples were considered to check the accuracy of the dynamic stiffness. Results were compared with those from analytical or substructure methods and good agreements were found.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 606
Author(s):  
Tengteng Li ◽  
Maosen Cao ◽  
Jianle Li ◽  
Lei Yang ◽  
Hao Xu ◽  
...  

The attempt to integrate the applications of conventional structural deformation reconstruction strategies and vibration-based damage identification methods is made in this study, where, more specifically, the inverse finite element method (iFEM) and pseudo-excitation approach (PE) are combined for the first time, to give rise to a novel structural health monitoring (SHM) framework showing various advantages, particularly in aspects of enhanced adaptability and robustness. As the key component of the method, the inverse finite element method (iFEM) enables precise reconstruction of vibration displacements based on measured dynamic strains, which, as compared to displacement measurement, is much more adaptable to existing on-board SHM systems in engineering practice. The PE, on the other hand, is applied subsequently, relying on the reconstructed displacements for the identification of structural damage. Delamination zones in a carbon fibre reinforced plastic (CFRP) laminate are identified using the developed method. As demonstrated by the damage detection results, the iFEM-PE method possesses apparently improved accuracy and significantly enhanced noise immunity compared to the original PE approach depending on displacement measurement. Extensive parametric study is conducted to discuss the influence of a variety of factors on the effectiveness and accuracy of damage identification, including the influence of damage size and position, measurement density, sensor layout, vibration frequency and noise level. It is found that different factors are highly correlated and thus should be considered comprehensively to achieve optimal detection results. The application of the iFEM-PE method is extended to better adapt to the structural operational state, where multiple groups of vibration responses within a wide frequency band are used. Hybrid data fusion is applied to process the damage index (DI) constructed based on the multiple responses, leading to detection results capable of indicating delamination positions precisely.


Author(s):  
Jingming Chen ◽  
Paolo Pennacchi ◽  
Dongxiang Jiang ◽  
Steven Chatterton

In the rotating machineries, large vibrations of a blade would result in fatigue crack, which is a great threaten to the safety. Therefore, it is of great importance to reduce the blade vibrations. Snubbing technique is a possible solution to this problem. A tiny gap is left between the shrouds of adjacent blades. While the forced vibration makes the relative displacement between two neighboring blades exceed the gap, the contact happens at the contact face of the shrouds, accompanied with friction and energy dissipation, which restricts the vibration. In this paper, a simplified model for a set of rotor blades is established, by using finite element method. The contact between the adjacent shrouds is considered. In this way, snubbing phenomenon can occur under forced vibration. Based on the model, modal analysis has been conducted. The 8x rev. frequency has been chosen as the excitation frequency. Under a certain amplitude of sine excitation, the circumferential vibration of the blades has been simulated. The vibration has been analyzed in the time domain. As expected, the blade motion is divided into four different states in one period. They are: non-contact, rebounding, sticky and escaping state. The four states had different mechanical and motion characteristics. The motion pattern for the set of blades has been also analyzed and the wave spreading along the bladerow has been described. Because of the snubbing mechanism, the waveform was distorted into serrated shape.


2011 ◽  
Vol 2011 ◽  
pp. 1-23 ◽  
Author(s):  
Sanaz Mahmoudpour ◽  
Reza Attarnejad ◽  
Cambyse Behnia

Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes have been studied during past decades. In practice, the effects of soil-structure interaction on the dynamic response of structures are usually neglected. In this study, the effect of soil-structure interaction on the dynamic response of structures has been examined. The substructure method using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based on finite element method and scaled boundary finite element method is applied. Finite element method is used to analyze the structure, and scaled boundary finite element method is applied in the analysis of unbounded soil region. Due to analytical solution in the radial direction, the radiation condition is satisfied exactly. The material behavior of soil and structure is assumed to be linear. The soil region is considered as a homogeneous half-space. The analysis is performed in time domain. A computer program is prepared to analyze the soil-structure system. Comparing the results with those in literature shows the exactness and competency of the proposed method.


2014 ◽  
Vol 668-669 ◽  
pp. 1130-1133
Author(s):  
Lei Hou ◽  
Xian Yan Sun ◽  
Lin Qiu

In this paper, we employ semi-discrete finite element method to study the convergence of the Cauchy equation. The convergent order can reach. In numerical results, the space domain is discrete by Lagrange interpolation function with 9-point biquadrate element. The time domain is discrete by two difference schemes: Euler and Crank-Nicolson scheme. Numerical results show that the convergence of Crank-Nicolson scheme is better than that of Euler scheme.


2011 ◽  
Vol 383-390 ◽  
pp. 2845-2849
Author(s):  
Fei Chen ◽  
You Fu Hou ◽  
Hong Yun Wu ◽  
He Wei Wang

To obtain the dynamic characteristics of the disc brake, the modal of the disc of brake is analyzed by finite element method and experimental method, the natural frequency and the vibration mode of the disc are obtained, the research shows that the result of finite element method is basically identical with the experimental method. The axial vibration of the disc and tangential vibration of the brake pad are tested by experiment method and the time domain charts are obtained, the main vibration frequencies of brake are studied, the vibration cause is analyzed and the corresponding improvement measures are put forward.


Sign in / Sign up

Export Citation Format

Share Document